Scotland’s Dotterel: still hanging on

blogpic brooding

Dotterel brooding chicks

Within the UK, the Dotterel now only breeds on plateaux in the highest Scottish mountains, restricted by habitat that is more commonly found in the arctic or arctic-alpine regions. 

As soon as climate change became apparent, the Dotterel turned into a focal species for ornithologists who were interested in how species would be affected by climate heating. Their fate seemed to be sealed; put simply, there is nowhere colder in Britain to which to retreat when faced with changing habitats and/or breeding conditions.

A 2020 paper by Steven Ewing, Alistair Baxter and colleagues explores the potential ways that changing environmental conditions may be driving the Dotterel’s decline.

Life history

Scottish Dotterels don’t actually spend much time in Scotland, with most birds arriving in early May and leaving within three months. The large part of the year is spent in North Africa, and the plains to the northwest of the Atlas Mountains in Morocco seem to be a particularly important wintering grounds for Scottish birds. Migration north and south appears to be direct, with few European reports of ringed birds in spring and autumn. There is some evidence that Dotterel move further south within North Africa as winter progresses (Whitfield et al 1996), perhaps responding to rainfall patterns.

blogpic map

In May, the numbers of males and females on Scottish breeding sites are roughly equal but many females leave their males sitting on a first clutch of eggs and then depart, leading to an observed drop in sex ratios to about 10:1. Females ringed in Scotland have been spotted breeding with Norwegian males later in the same season and this onward movement to areas with later snow-melt may well be a normal pattern. Indeed, many Dotterels seen on passage in May, often on traditionally used fields or mountain tops south of the Scottish Highlands, may loop north, passing through Highland nesting haunts and then heading northeast into Scandinavia.

A species in decline

blogpic Alistair

Alistair Baxter points to a Dotterel nest that’s right next to a path following the line of a ridge

Dotterels in Britain are at the south-western limit of the species’ global range. They breed almost exclusively in arctic-alpine habitats above 750 m, particularly on Racomitrium moss-heaths that are so characteristic of the flatter topped mountains. These habitats are of high conservation concern, with a tapestry of nationally-rare alpine and arctic plant species.

Scottish Dotterel have been well-studied for over eighty years, a process that was started by Desmond Nethersole-Thompson in the 1940s (detailed in his classic monograph The Dotterel, 1973) and has involved the authors of the Global Change Biology paper since 1987. Some of the areas featured in this paper were studied by Nethersole-Thompson.

An earlier WaderTales blog (Dotterel numbers have fallen by 57%) suggested a number of possible reasons for declines – habitat changes, increased predation and increased disturbance in the Scottish Highlands, compounded by issues affecting the wintering population in North Africa. In the 2020 paper, Ewing et al look in more detail at the potential roles of these changes

Climate and habitat change in Scotland’s mountains

Mountains in Britain are subject to a range of environmental drivers of change that may potentially influence Dotterels, but the logistical challenges presented by working in these environments means that there is rarely good data documenting these changes. This study focuses on snow cover and nitrogen deposition.

blogpic change

The amount of snow-cover is important for cold-adapted species of plants and animals; it insulates the ground in winter and slows up warming in spring, thereby creating a relatively stable environment.  Potential consequences of changes in winter snow-lie for alpine birds might include:

  • A longer growing season for plants, with taller vegetation that reduces the suitability of these areas for species that favour shorter swards.
  • Fewer snow patches, around which Dotterel feed, perhaps also leading to a reduction in peak insect abundance that may not match feeding requirements of chicks.

blogpic nestLots of research carried out in the UK shows that nitrogen deposition is an important driver of upland vegetation change.  Higher deposition of nitrogen tends to result in a reduction of alpine specialist plants, including species of mosses that form key breeding habitats for Dotterel.

The earlier WaderTales blog (Dotterel numbers have fallen by 57%) suggested other possible reasons for Dotterel declines on the breeding grounds, including increased predation and increased disturbance in the Scottish Highlands. While these potential drivers of change could not be tested, due to a lack of data, they are considered in the paper’s Discussion.

Study system

The data that lie at the heart of the Global Change Biology paper have been collected over three decades. Two different but complementary data sources were used in the study.  Firstly, Dotterel were counted at between 128 and 198 alpine sites in the UK during three national surveys in 1987-88, 1999 and 2011.  These censuses focused upon suitable breeding habitats, especially Racomitrium heath, with the latter two surveys successfully covering more than 50% of identified breeding areas.  Secondly, between 1987 and 1999, a smaller cohort of alpine sites were surveyed with far greater frequency (between 40-60 times) as part of SNH’s Montane Ecology Project, where the aim was to study the Dotterel’s breeding ecology in far more detail. The 2020 paper contains detailed information about site use and the parameters that were measured/assessed (elevation, slope, area, snow cover, nitrogen deposition, summer temperature etc.)

blogpic surveyEach site visit involved a lot of climbing, so many of the sites were visited only once per season, with more frequent visits to just 15% of the sites. Having accompanied Phil Whitfield (one of the authors) up one mountain, on one day, I have huge respect for the effort that each data-point represents.  Once up on the tops, observers covered the study areas thoroughly, passing within 100 m of every point and scanning frequently. This has been shown to provide a good count of breeding males.

The authors used their data to investigate whether key potential drivers of environmental change in Scottish mountains (snow-lie, elevated summer temperatures and nitrogen deposition) may have contributed to the population decline of Dotterel.  They also consider the role of rainfall on the species’ wintering grounds in North Africa. The key questions they address are:

  1. Is there evidence of an uphill shift in the elevation of the Dotterel’s breeding range during the study period (1987-2014)?
  2. Are changes in the density or site occupancy of breeding male Dotterels associated with the size, connectedness or topographical aspect of alpine sites?
  3. Does spatial variation in atmospheric nitrogen deposition account for variation in density or occupancy of breeding males at alpine sites?
  4. Are patterns of snow cover or late summer temperatures associated with density or occupancy of male Dotterels at alpine breeding sites?
  5. Do densities of breeding male Dotterels on alpine sites vary with conditions on the North African wintering grounds, as reflected by winter rainfall?

blogpic gloaming

What has changed?

The results are presented in two ways. Data from the period of intensive studies, between 1987 and 1999, are used to try to understand factors influencing annual changes in the number of nesting males. Examination of changes between 1987-90 and 2011-14 gave some indication of factors affecting longer-term trends – something that is important to understand when Dotterel can live for at least ten years.

Densities of breeding male Dotterel in mountainous regions of Scotland declined between 1987 and 1999 and, over the longer-term, site occupancy fell from 80% in 1987 to only 36% in 2014. Densities of breeding males declined disproportionately from lower-lying sites, which resulted in the Dotterel’s breeding range retreating uphill at a rate of 25 m per decade.

Geographically isolated sites appear more likely to lose breeding Dotterel. This makes sense; playback studies in Russia have shown that passing flocks of Dotterel respond to calls, suggesting that birds will be attracted to already-occupied locations.

Settlement patterns were linked to snow-cover.  Generally, Dotterels appear to prefer to settle on higher sites, but late-lying snow at higher elevations appears to deprive them of suitable breeding habitat.  Rather than delay nesting, it seems that these birds then choose to move to lower snow-free sites to breed. Long-term changes in snow cover are poorly documented in high-elevation habitats in Scotland, so it is difficult to know whether the substantial declines observed for Dotterel in recent decades reflect systematic changes in snow-lie.

blogpic snow patch

Nitrogen deposition was shown to be negatively associated with densities of males nesting at lower and intermediate elevations.  The primary impact of nitrogen deposition on Dotterel is likely to be via effects on the species’ favoured Racomitrium moss-heaths, with greater nitrogen levels increasing the rate of moss decomposition and favouring accelerated grass growth.  This presumably results in these habitats becoming increasingly unsuitable for breeding Dotterel.

blogpic chick

Will this chick makes it to Morocco? If it does, how will the conditions it experiences in the non-breeding season affect its probability of return to Scotland?

High rainfall in North Africa seems to lead to higher densities of breeding male Dotterel two springs later, suggesting that wintering ground conditions can potentially influence population dynamics of this alpine-breeding bird.  Similar positive impacts of North African rainfall have also been seen in Ring Ouzels that breed in the UK (Beale et al. 2006).

Dotterel inhabit open farmland and sub-desert steppes in North Africa, where seasonal rainfall brings a flush of vegetation growth and insect abundance. Higher winter rainfall may increase prey availability and Dotterel survival rates but that would be reflected in the arrival numbers in the next spring. The lag of an extra year suggests that low rainfall levels may mostly affect young birds, perhaps delaying recruitment of some Dotterels until their second breeding season.

Conclusions

blogpic juvvyPopulation declines and site abandonment by Dotterel in Scotland during the last three decades have largely occurred at lower elevations, fitting with the traditional idea of climate change limiting the available climate space for alpine breeding species. However, this study found relatively limited evidence that the decline in the breeding population is being driven by climatic factors on the breeding grounds.

Snow cover does seem to influence year-to-year variation in the species’ elevational distribution in Scotland, potentially because a smaller population may now be increasingly settling on higher sites that perhaps were previously unavailable, due to extensive snow cover.  There was also some evidence that greater nitrogen deposition reduced breeding densities of Dotterel at low to intermediate elevations, perhaps by decreasing the suitability of Racomitrium moss heath breeding habitats.  It is also possible that there may have been a redistribution of birds, with newer generations moving further north, to more suitable sites in Norway. (There is a WaderTales blog about this sort of Generational Change mechanism in waders, focusing on Black-tailed Godwit).

Given that Dotterels spend so little time in Scotland, a big gap in our understanding is what is happening in Morocco, where adult Scottish Dotterel spend three-quarters of the year and where young birds may also spend their first summer. How are factors such as rainfall and land-use (particularly farming methods) affecting Dotterels? Might changes in these areas affect other species of migrant that leave northern Europe at the end of the breeding season? Perhaps conservation scientists need to head south for the winter to find out?

Read more in the paper

Clinging on to alpine life: investigating factors driving the uphill range contraction and population decline of a mountain breeding bird. Steven R. Ewing, Alistair Baxter, Jeremy D. Wilson, Daniel B. Hayhow, James Gordon, Des B. A. Thompson, D. Philip Whitfield & René Van der Wal. Global Change Biology.

blogpic dewy


GFA in IcelandWaderTales blogs are written by Graham Appleton, to celebrate waders and wader research.  Many of the articles are based on published papers, with the aim of making shorebird science available to a broader audience.

@GrahamFAppleton

 

7 thoughts on “Scotland’s Dotterel: still hanging on

  1. Hi Graham, interesting piece and one which although widely anticipated is concerning. I am actually interested in the other end of the story, ie the wintering grounds. Your map shows these as being Morocco, yet there are very few records from there (eg only 5 on eBird – albeit on flock of 67 in Dec 19) and little data. Do you have a source for any confirmation that they do winter in Morocco?

    Like

    • Thank you for this Graham. I think that the problem with this is two fold. It is clear that the ringing recoveries are from a period of 1977/1992 when at the most recent is 28 years ago, and a lot has happened in morocco since then, especially in the habitat in the area mentioned (Population has doubled, Agriculture is more intensive and the arid steppe has been ploughed up etc. In addition, plotting the locations shows them as town centres – either location of markets or municipality building which is a suggestion that they may not be accurate.
      I have been in contact with guys in Morocco on this (and other species). There are two other data sets for wintering records i.e. Observation.org and eBird. (obviously these are not limited to Scottish Birds) Oddly virtually none of the recorded areas from each source cross over! The feedback from Morocco is that most birds now winter in the North East in an area bounded by Midelt in the west, Oujda in the North East and the High Atlas in the South. I can send a plot is I have your email address.

      Like

  2. I’m no great expert on Dotterel or on their habitat at either end of migration. This blog is very interesting and of course with all good science asks almost as many questions as it answers. During 1986-91 I spent the springs and summers in the Forest of Bowland where we occasionally saw passage Dotterel and I’ve seen them there since. However in 1983 they bred once on Ward Stone ( 560m asl). Breeding was also strongly suspected on Great Whernside (699m asl) at the head of Nidderdale in both 1981 and 1993 when single males were seen in distraction display, where pairs had been present earlier in the season. The number of passage birds in both these areas of the Yorkshire Dales and Forest of Bowland seems to have declined significantly since. These of course are the type of isolated lower altitude breeding sites that one would expect to be abandoned first.

    Like

  3. Pingback: Internet entrepreneur brings rewilding to Peak District farm – Inkcap

  4. Pingback: Migration blogs on WaderTales | wadertales

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s