Why count shorebirds? A tale from Portugal

The Sado Estuary is one of Portugal’s most important wetlands – a key link in the chain of sites connecting Africa and the Arctic, on the East Atlantic Flyway. In a paper in Waterbirds, João Belo and colleagues analyse changes in numbers of waders wintering in this estuary over the period 2010 to 2019, with a focus on roost sites. These results are interpreted in regional and flyway contexts. The team find serious declines in numbers of Avocet, Dunlin and Ringed Plover.

Lost roost sites

The Sado Estuary became a nature reserve in 1980 and has since been classified as a Ramsar Site, a Special Protection Area (SPA – Natura 2000) and an Important Bird and Biodiversity Area. The Estuary lies about 30 km south of the much larger and more famous Tagus (or Tejo) Estuary, which is threatened by a new international airport (see Tagus Estuary: for birds or planes?). A suggestion that the Sado could provide mitigation habitat for damage done to the Tagus prompted scientists from the Universities of Aveiro and Lisbon to review the current state of the estuary.

João Belo and his colleagues used monthly data from a programme of wader surveys, conducted largely by volunteer birdwatchers. These took place between January 2010 and December 2019. Roosting birds were counted at high tide along the northern shores of the Sado estuary and any habitat changes were noted.

During the ten-year survey period, 21% of the available high-tide roost area was lost. These changes were associated with the commercial  abandonment of saltpans (with consequent increases in vegetation) and the conversion of others for fish farming (often with netting, to keep out fish-eating birds).

Results of the survey

In their paper, João Belo and colleagues focused on total numbers of waders and counts of the six most commonly-encountered species: Avocet, Dunlin, Black-tailed Godwit, Redshank, Ringed Plover and Grey Plover. They compared winter (Dec, Jan and Feb) counts in 2019 with those from 2010. This is when peak numbers of Avocet, Redshank and Grey Plover occur. Higher counts of Dunlin are made in spring, as schinzii birds returned from Africa, with peak counts of Black-tailed Godwit and Ringed Plover occurring in autumn.

The key findings are:

Ringed Plover numbers dropped by 23%
  • There was a strong decrease in the overall number of waders wintering in the Sado Estuary. This trend is mostly driven by steep declines in three of the six most abundant species: Avocet, Dunlin and Ringed Plover.
  • Avocet numbers were 42% lower in 2019 than they had been in 2010.
  • Dunlin numbers dropped by over half, with 2019 counts being only 47% of those in 2010. These are mostly dunlin of the alpina subspeciesthat breed between Northern Scandinavia and Siberia.
  • Ringed Plover numbers dropped by 23% between 2010 and 2019.
  • Redshank increased significantly between 2010 and 2019, while the population of Grey Plover was relatively stable, and it was not possible to derive a population trend for Black-tailed Godwit.

It is interesting to look at these patterns alongside data collected in Britain & Ireland, over the same period. As discussed in Do population estimates matter? and Ireland’s wintering waders, there have been major changes in wader numbers, with most species currently in decline.

At the same time that Avocet numbers have dropped on the Sado Estuary they have rocketed in the UK (here seen on the Humber Estuary)
  • Winter Avocet numbers have increased massively in Britain & Ireland. It is possible that young birds are more easily able to settle in these northern areas, now that winter temperatures are generally warmer. Declines in Portugal may reflect a northwards shift of the winter population, driven by new generations of birds.
  • Numbers of Ringed Plovers in Britain & Ireland did not change over the period 2010 to 2019 but had dropped a lot in the preceding twenty years.
  • For Dunlin, the size of the declines in Britain & Ireland are consistent with those on the Sado. It has been suggested that more young birds might be settling in areas such as the Wadden Sea, closer to Siberian breeding areas, something that may have become more possible given the reduced intensity and occurrence of freezing conditions along the east coast of the North Sea.

Regional and Flyway patterns

As discussed in the blog Interpreting changing wader counts, based on research led by Verónica Méndez, local changes in numbers are usually reflective of broader changes in population levels. Individual waders are unlikely to seek alternative wintering sites unless habitat is removed, so birds do not re-assort themselves into the ‘best’ areas when population levels decrease. Instead, there is general thinning out across all sites as populations decline. In this context, it is unsurprising that the trends in the Sado Estuary are similar to those found elsewhere in Portugal and in other Western European wintering areas.

Looking forwards

The survey data collected between 2010 and 2019 form a useful backdrop against which to monitor what might happen when (or perhaps if) a new international airport is constructed within the nearby Tagus Estuary. If some birds are displaced to the Sado, increases in numbers might be expected.

Displacement is not cost-free, as has been shown in a well-studied population of Redshanks on the Severn Estuary in Wales. When Cardiff Bay was permanently flooded, as part of a major redevelopment, colour-marked Redshank dispersed to sites up to 19 km away. Adult birds that moved to new sites had difficulty maintaining body condition in the first winter following the closure of Cardiff Bay, unlike the Redshank that were already living in these sites. Their survival rates in subsequent winters continued to be lower than for ‘local’ birds, indicating longer-term effects than might have been predicted.

These three papers are essential reading for anyone interested in the consequences of displacements caused by development projects.

Given that the Sado has multiple conservation designations, including as a Ramsar site, and that this study has shown a clear loss of available roosting areas, perhaps it is time to identify a high-tide refuge that can be fully protected and managed in ways which create a range of suitable habitats for use by long-legged and short-legged waders. A nature reserve such as this has a potential to attract birdwatchers too, with prospective increased income from tourism.

Sado International

Curlews don’t get a mention in this paper but the The Sado provides a neat link to a 2022 blog, A Norfolk Curlew’s Summer. This tale focuses on ‘Bowie’, a male Curlew that breeds in Breckland (Eastern England) and has been tracked to The Sado Estuary. In the blog, Bowie’s story stops in The Tagus but he subsequently headed further south to The Sado, where he spent the winter. At the time of writing (13 Feb 2023) he is still there but hopefully he will heading north soon.

The Sado is not only important in the winter, of course. As mentioned earlier, it is a spring stop-over for birds such as schinzii Dunlin, heading north from Africa to Siberia, and a moulting/staging site for waders heading south in late summer. Tracking and colour-ringing are telling more of these stories, with links to countries as far north as Canada and Siberia and as far south as South Africa.

The overgrown embankments within the former saltpans no longer provide suitable roosting sites for waders

Keep counting

The Sado story could not have been written without the work of volunteer counters who collect monthly data during the winter months, on the Sado Estuary, across Portugal and on the wider East Atlantic Flyway. These monitoring efforts are essential when attempting to track changes in wader populations, especially when extra information can indicate links to habitat changes, as is the case in the Sado. The international picture is painted using Flyway information generated using January counts that are developed by the Institute for Nature Conservation and Forests (ICNF).

Here is a link to the paper:

Synchronous declines of wintering waders and high-tide roost area in a temperate estuary: results of a 10-year monitoring programme. João R. Belo, Maria P. Dias, João Jara, Amélia Almeida, Frederico Morais, Carlos Silva, Joaquim Valadeiro & José A. Alves. Waterbirds. doi.org/10.1675/063.045.0204

Birdwatchers that volunteered to survey roost-sites gather for a team photo

WaderTales blogs are written by Graham Appleton (@GrahamFAppleton) to celebrate waders and wader research. Many of the articles are based on published papers, with the aim of making shorebird science available to a broader audience.

Iceland’s waders need a strategic forestry plan

More and more trees are being planted in lowland Iceland – and further increases are planned, in part encouraged by the suggestion that this will mitigate for climate change. Forestry is potentially bad news for Whimbrel, Black-tailed Godwit and other waders that breed in open habitats, and which migrate south to Europe and Africa each autumn. Are there ways to accommodate trees while reducing the damage to internationally important populations of waders?

Pressure on Iceland’s breeding waders

Iceland is changing; more people want second homes in the countryside, the road network is being developed to cope with more and more tourists, new infrastructure is needed to distribute electricity, agriculture is becoming more intensive and there is a push to plant lots more trees. The south of the country is seeing the most rapid loss of open spaces, providing opportunities to study how these incursions affect ground-nesting species, particularly breeding waders.

One of the big changes, especially in Southern Iceland, has been the planting of non-native trees, as shelter belts around fields and country cottages and, more significantly, as commercial crops. Iceland has been largely treeless for hundreds of years but climatic amelioration has facilitated rapid forestry development in areas where tree growth was previously limited by harsher environmental conditions. Seeds of some non-native species are blown on the wind for a kilometre or more, to germinate in open land, well beyond the edge of planned forests.

Most of the new forests are in lowland areas, where we also find the most important habitats for many ground-nesting bird populations. Lodgepole pines may be good news for Goldcrest and Crossbills but not for species such as Golden Plover, Dunlin & Redshank. For breeding waders, the most obvious impact of a new forest is direct loss of breeding habitat but trees can have wider effects, by providing cover for predators and breaking up swathes of open land that are used at different stages of the breeding season. Little is currently known about how predators in Iceland use forest plantations but any perceived risks of predator presence and reduced visibility is likely to influence densities of birds in the surrounding area.

Iceland’s open habitats have suited breeding waders for hundreds of years

Aldís E. Pálsdóttir’s studied changing bird populations in lowland Iceland during her PhD at the University of Iceland, in collaboration with researchers from the University of East Anglia (UK) and the University of Aveiro (Portugal). Among the most concerning of these changes is the rapid expansion of forestry in these open landscapes.

Assessing the potential impacts of trees

In a 2022 paper in the Journal of Applied Ecology, Aldís assesses whether densities of ground-nesting birds are lower in the landscape surrounding plantations and whether these effects vary among plantations with differing characteristics. She and her fellow authors then quantified the potential impact of differing future afforestation scenarios on waders nesting in lowland Iceland.

Forestry currently covers about 2% of Iceland’s land area so the potential for growth is massive. In 2018, the Icelandic government provided additional funding to the Icelandic forest service to increase the number of trees planted, with a goal of enhancing carbon sequestration. As forestry primarily operates through government grants to private landowners, who plant trees within their own land holdings, plantations typically occur as numerous relatively small patches in otherwise open landscapes. These features make Iceland an ideal location in which to quantify the way that plantations affect densities of birds in the surrounding habitats, and to identify afforestation strategies that might reduce impacts on globally important wader populations.

To measure the effects of plantation forests on the abundance and distribution of ground-nesting birds, in particular waders, 161 transect surveys were conducted between May and June 2017. To avoid systematic bias arising from possible “push effects” of corralling birds in front of the surveyor, surveys were conducted along transects that started either at the edge of the plantation, with the observer moving away (79 transects), or started away from the plantation, with the observer walking towards it (82 transects). Please see the paper for the full methodology. The variation in density with distance from plantation was used to estimate the likely changes in bird numbers, resulting from future afforestation plans, and to explore the potential effects of different planting scenarios.

Bird communities change around plantations

Snipe densities are highest close to young forests

On the transects, 3713 individual birds of 30 species were recorded. The nine most common species (excluding gulls, which rarely breed in the focal habitats) were seven waders (Oystercatcher, Golden Plover, Dunlin, Common Snipe, Whimbrel, Black-tailed Godwit & Redshank) and two passerines (Meadow Pipit & Redwing). These species accounted for 88% of all birds recorded.

  • Of the seven waders, Snipe was the only one found in significantly higher numbers closer to plantations. Snipe density declined by approximately 50% between the first (0-50 m) and second (50-100 m) distance intervals, suggesting a highly localised positive effect of plantations on Snipe densities.
  • Densities of Golden Plover, Whimbrel, Oystercatcher, Dunlin and Black-tailed Godwit all increased significantly with increasing distance from plantations. Dunlin and Oystercatcher showed the largest effect (~15% increase per 50 m), followed by Whimbrel (~12%), Black-tailed Godwit (~7%) and Golden plover (~4%).
  • Although Redshank did not show a linear relationship with distance from plantation edges, densities were lowest close to the plantation edge.
  • There were more Redwings close to woodland edges but Meadow Pipit showed no change in density with distance from plantations.

Golden Plover, Whimbrel and Snipe were found in lower densities close to the tallest plantations (over 10 m), when compared to younger plantations (tree height 2m to 5m), suggesting that the impact of forests gets more pronounced as the trees grow. Plantation density and diameter had no additional effect on the species that were in lower densities closer to the plantations, implying that the mere presence of plantations induces the observed changes in abundance. See the paper for more details.

The bigger picture

Aldís Pálsdóttir and Harry Ewing walked every step of every transect and made detailed counts of what they saw – data that are invaluable when considering local impacts of plantations – but the paper becomes even more interesting when the authors look at the bigger picture. When plantations are distributed across these open landscapes, in different configurations, what will be the accumulated effects on the numbers of breeding waders? They estimate likely changes in abundance resulting from planting 1000 ha of plantation in different planting scenarios, ranging from a single block to lots of small patches.

  • Planting 50 smaller patches of 20 ha, instead of 1000 ha of forest in one large patch, is estimated to double the resulting decline in abundance (because there is more forest edge and hence a bigger effect on more open habitat)
  • This effect increases even further as the patches become smaller; in their models, planting 1000 blocks each of 1 ha would have nine times the impact of planting one forest of 1000 ha.
  • Proximity of woodland seems to be the driver of local distributions of breeding waders so the authors suggest that the amount of edge (relative to area) should be minimised, to reduce the impact of a plantation – which means making forests as near circular as possible.

It is clear that fewer larger forestry plots are likely to be less bad than lots of small, local plantations, in terms of the effects on wader populations. The figure below illustrates how much more land is affected when one woodland is replaced by four with the same total area. The grey area (equivalent to a 200 metre annulus) accounts for 88 hectares in the one-patch illustration and 113 hectares for four patches.

An urgent need for action (and inaction!)

Iceland holds large proportions of the global nesting populations of Golden Plover (52%), Whimbrel (40%), Redshank (19%), Dunlin (16%) and Black-tailed godwit (10%) (see Gunnarsson et al 2006) and is home to half or more of Europe’s Dunlin, Golden Plover and Whimbrel. Data in the table alongside have been extracted from Annex 4 of the report, which was discussed at the 12th Standing Committee of AEWA (Agreement on the Conservation of African-Eurasian Migratory Waterbirds) in Jan/Feb 2017.

Aldís measured the areas of 76 plantations in her study, using aerial photographs. The total area of woodland was about 2,800 ha and the total amount of semi-natural habitat in the surrounding 200 m was about 3,600 ha. Using the reduced densities that she found on the transects and the direct losses for the plantations themselves, she estimates potential losses of about 3000 breeding waders, just around these 76 forest plots. Extrapolating this figure to the whole of the Southern Lowlands of Iceland, the total losses resulting from all current plantations are likely to already be in the tens of thousands. Worryingly, the densities measured on the transects in this paper (even 700 m from forest edge) were well below those measured (slightly differently) in previous studies of completely open habitat, suggesting that losses may already be significantly higher than estimated in the paper.

A scary statistic in the paper is that “6.3% of the Icelandic lowlands is currently less than 200 m from forest plantations”. Given the incentives to plant lots more trees, this is particularly worrying for species such as Black-tailed Godwits, the vast majority of which breed in these lowland areas (between sea level and 300 metres).

Non-native trees are spreading beyond the boundary of a planned forest

It has been suggested that breeding waders might move elsewhere when impacted by forestry but migratory wader species are typically highly faithful to breeding sites. If birds are not going to move to accommodate trees, then perhaps plantations should be located where bird numbers are naturally low, such as in sparsely or non-vegetated areas, at higher altitudes and on slopes? Planning decisions could usefully be informed by surveys of breeding birds, to identify high-density areas that should be avoided.

The severe impact that planting forests in open landscapes can have on populations of ground-nesting birds emphasises the need for strategic planning of tree-planting schemes. Given Iceland’s statutory commitments to species protection, as a signatory to AEWA and the Bern Convention on the Conservation of European Wildlife and Natural Habitats, and the huge contribution of Iceland to global migratory bird flyways, these are challenges that must be addressed quickly, before we see population-level impacts throughout the European and West African Flyway.

To learn more

The take-home message from this work is clear. Local planning decisions and the ways in which forestry grants are allocated are producing a patchy distribution of plantations across the lowlands of Iceland, and this is bad news for breeding waders.

The paper at the heart of this blog is:

Subarctic afforestation: effects of forest plantations on ground-nesting birds in lowland Iceland. Aldís E. Pálsdóttir ,Jennifer A. Gill, José A. Alves, Snæbjörn Pálsson, Verónica Méndez, Harry Ewing & Tómas G. Gunnarsson. Journal of Applied Ecology.

Other WaderTales blogs that may be of interest:

Forest edges

Work by Aldís Pálsdóttir (pictured right)

Changing agricultural systems in Iceland (work by Lilja Jóhannesdóttir)


WaderTales blogs are written by Graham Appleton (@GrahamFAppleton) to celebrate waders and wader research. Many of the articles are based on published papers, with the aim of making shorebird science available to a broader audience.

Power-lines and breeding waders

Around the globe, people are consuming more energy, much of which is delivered to cities, towns, individual homes and businesses via over-head electricity cables. In a paper in Ibis, Aldís E Pálsdóttir and colleagues investigate the effects of power-lines on Iceland’s breeding waders. This is the first of several papers from Aldis’ PhD thesis, in which she seeks to understand how forestry and the sprawl of new infrastructures (roads, cottages and power-lines) are changing bird distributions within what were previously open landscapes.

Breeding waders in Iceland

Iceland is a hot-spot for breeding waders, holding half or more of Europe’s Dunlin, Golden Plover and Whimbrel, in a country that is a bit smaller then England. In a 2017 report prepared by AEWA (Agreement on the Conservation of African-Eurasian Migratory Waterbirds), in response to concerns about the effects of afforestation on Iceland’s waterbirds, we learn that:

“Iceland is second only to Russia in its importance as a breeding ground for migratory waterbirds in the AEWA region. It supports the most important breeding populations in Europe for six species of waders and is the second most important country for three.”

Data in the table alongside have been extracted from Annex 4 of the report, which was discussed at the 12th Standing Committee of AEWA in Jan/Feb 2017.

Power lines

For waders nesting in Iceland, power-lines are a new addition to a once-open landscape. Pylons provide potential nesting opportunities for Ravens and perches for Gyrfalcons, while the wires between them are a collision risk. Under power-lines, carcases of swans, geese and waders may attract scavenging Arctic Foxes and Ravens, thereby increasing the activities of nest predators. Perhaps these actual and perceived threats affect densities of breeding waders in the vicinity? Or might birds react to something less obvious, such as the emission of UV light or electromagnetic radiation?

In Iceland, the vast majority of electricity is produced from hydropower or geothermal sources, often long distances from the areas in which the power is used. A new move to develop the wind energy sector has the potential to further add to the number of power lines and introduce them in more areas of the country. Much of the increase in electricity production over the last fifty years has been used to fuel industries such as aluminium smelting and there is the potential to further expand generation capacity, perhaps exporting some electricity to other countries.

Much of Iceland’s electricity is used to power aluminium smelters (here, in Hvalfjörður)

Counting the birds

Aldís counting waders on a transect

Aldís conducted the fieldwork for this study between the 6th May and the 20th June 2019, counting birds along 85 transects of between 300 m and 500 m, running perpendicular to power lines. The full methods are described in the paper but it is interesting to see that they included a check to see whether there were different results if walking towards or away from the power lines. Each transect was divided into intervals of 50 m length, each corresponding to 1 hectare of surveyed land. For each power line, Aldís recorded the number of cables, pylon characteristics, and the height and voltage of the line.

Results

In total, 1067 birds of 21 different species were recorded on the 85 transect surveys. Over 90% of sightings were of eight species considered in the subsequent analysis: Dunlin, Black-tailed Godwit, Golden Plover, Meadow Pipit, Redshank, Redwing, Snipe and Whimbrel. Having analysed the data, Aldís and her colleagues concluded that:

  • For all eight species combined, the areas closest to the power lines (0-50 m) supported densities of approximately 112 birds/km2 (±13 SE) which increased by approximately 58% to 177 birds/km2 (±24 SE), in the sector that was between 450-500 m away from the power-lines. On average, there was a 4% increase in abundance between adjacent 50 metre bands.
  • At the species level, Redshank (figure below) and Whimbrel density increased significantly with distance from power lines (18% and 9% per 50 m, respectively) but no other significant effects were detected for other species individually.
  • There were no detectable difference between types of power-lines or relating to the voltages of the electricity they carried.

Implications of the research

In the paper’s discussion there are questions as to why densities of Redshank and Whimbrel (right), in particular, are lower near power-lines. The two species behave differently while nesting, with Redshanks being nest-hiders and Whimbrel nesting in the open, but previous research has shown that their nest predation rates are quite similar (see Where to nest?).

The reason why significant reductions in density close to power lines were apparent for Whimbrels and Redshanks (but not for other species) is not clear but the authors suggest that sample sizes may have been too low for there to have been measurable effects for species such as Dunlin and Golden Plover (below).

Power lines could have direct impacts, such as increased collision risk, but this may be difficult to establish directly, as the authors suggest that carcasses are likely to be quickly removed by scavengers.

Ravens may find it easier to find and predate nests if there are pylons or wires on which to perch but it will be hard to discriminate between an actual predation effect, reducing numbers in areas close to power-lines, and the avoidance of risky areas because of a perceived threat of predation. This is discussed in Mastering Lapwing conservation.

Given the depressed density of ground-nesting bird species in the vicinity of overhead power lines, the authors of the paper suggest that burying power lines might be a better option, even though there would be temporary disturbance to the ground during installation.

What are the implications for Iceland’s breeding waders?

It would be interesting to calculate how many Whimbrel and Redshank (left) territories would be lost over the course of a 50 km run of power-lines through open landscapes – and then extrapolate that to 500 km and 5,000 km. As shown in the earlier table, 75% of Europe’s Whimbrel breed in Iceland. How vulnerable are they to power-line infrastructures and what might be the impact on a breeding population of over 300,000 pairs?

This is the first of several papers from Aldis’ thesis, in which she seeks to understand the current rapid changes to Iceland’s lowland landscapes. Links to other blogs and papers will be added as they appear. It should soon be possible to reveal the combined effects of these incursions into open wader habitats, by considering plans that might affect these areas over the next twenty years, working out potential losses and setting these numbers in a flyway context.

This paper is published as:

Effects of overhead power-lines on the density of ground-nesting birds in open sub-arctic habitats. ALDÍS ERNA PÁLSDÓTTIR, JENNIFER A. GILL, SNÆBJÖRN PÁLSSON, JOSÉ A. ALVES, VERÓNICA MÉNDEZ, BÖÐVAR ÞÓRISSON & TÓMAS G. GUNNARSSON. Ibis. https://doi.org/10.1111/ibi.13089

Here’s a link to another blog about Aldís Pálsdóttir’s research: Iceland’s waders need a strategic forestry plan.

A complementary set of papers by Lilja Jóhannesdóttir investigated how changes to Iceland’s farming may also be affecting breeding waders. These are discussed in three WaderTales blogs:


WaderTales blogs are written by Graham Appleton (@GrahamFAppleton) to celebrate waders and wader research. Many of the articles are based on published papers, with the aim of making shorebird science available to a broader audience.

Waders on the coast

The UK’s coastline is of international importance because of the numbers of waders that it supports. In winter it accommodates over a third of Europe’s wintering Oystercatcher, Ringed Plover, Bar-tailed Godwit and Knot, as well as an increasing number of Sanderling.

Wintering waders on the UK’s estuaries are counted every month but those on the 17,000 km of open coast are only counted once a decade. There are good reasons for this disparity, given the much higher development pressures on estuaries and the need for regular monitoring of sites that are designated and protected. However, this does mean that we have very little information about wintering Purple Sandpipers, the vast majority of which are not covered by monthly Wetland Bird Surveys (WeBS). Over three-quarters of the UK’s Ringed Plovers are missed too, along with over half of the Sanderling and Turnstones and nearly half of the Curlew.

The last Non-estuarine Waterbird Survey took place during the winter of 2015/16, as discussed in the WaderTales blog NEWS and Oystercatchers. Jenny Gill and I undertook counts on Great Cumbrae and along stretches of the Clyde coast, in Scotland, an area we had also covered for the 2006/07 survey. We were concerned to count only 84 waders in 2015, compared to 206 in 2006. Details are in the table alongside. We hoped that 900 other people, walking along a total of 9000 km of the UK’s coastline, had been more successful!

The paper summarising NEWS results for the whole of the UK and making comparisons with previous surveys in 1997/98 and 2006/07 was not published until 2021. In the intervening period, the counts were included in two papers about wintering populations of waterbirds in Great Britain and Ireland, that were discussed in Do population estimates matter? and Ireland’s wintering waders. This blog draws heavily on a Twitter thread from the Wetland Bird Survey and the BTO’s press release. The new paper is published in Bird Study.

The big picture

In December 2015 and January 2016, NEWS III volunteers walked along amazing, long, white beaches, surveyed rocky headlands and scrambled the lengths of boulder-strewn coves. Not every kilometre of the coast could be visited but the fact that 50% coverage was achieved meant that estimates could be made of the whole coastline of the United Kingdom, together with the Isle of Man and the Channel Isles.

In terms of absolute numbers, Scotland has consistently supported the majority of the population across all non-estuarine waterbird surveys for Oystercatcher, Ringed Plover, Golden Plover, Lapwing, Purple Sandpiper, Bar-tailed Godwit, Curlew, Redshank and Turnstone. Although this is likely to reflect the relative length of the coastline for Scotland (12,714 km) compared to England (2,705 km), Wales (1,185 km) and Northern Ireland (328 km), Purple Sandpiper, Curlew, Redshank and Turnstone still appear to show a bias towards Scotland.

Using the information collected during the survey, BTO scientists were able to extrapolate estimates of the numbers of open-coast waders in the different countries of the UK and its island dependencies (see table below). The results are published in the journal Bird Study and summarised in the table below.

To evaluate the potential importance of the open coast, NEWS estimates for Great Britain in 2015/16 were compared to average population estimates. For eight species, the open coastline accounts for over 20% of the winter population. The figure of 113% for Purple Sandpipers suggests that more birds may have been present on the coasts of the UK in 2015/16 than in an average year or that the population estimate needs to be revisited. There are no Lapwings or Golden Plover in the table below, as there is no recent, reliable estimate of the national wintering population for either species. The Greenshank line is in italics as the sample size is small.

Ten species are considered in detail in the following sections. The maps were downloaded from the BTO website on 20 March 2021 (https://www.bto.org/our-science/projects/ringing/publications/online-ringing-reports). Comparisons are made between results from the Wetland Bird Survey (WeBS) and the Non-estuarine Waterbirds Survey (NEWS).

Oystercatcher

26% use open coasts. 21% NEWS decline since 1997/98. (WeBS decline 22%).

In December 2015, as we walked around the coast of Great Cumbrae in the Firth of Clyde, pairs of Oystercatchers were already staking out their territories, probably not having travelled anywhere since the previous summer or perhaps even in the last twenty years! Wintering flocks that we saw may well have included breeding birds from inland sites in Scotland, from Iceland and from Norway, together with juveniles and non-breeding sub-adults. NEWS III found that densities of coastal Oystercatchers were highest in Wales but that this is the area in which there had been the biggest declines. Breeding numbers have fallen rapidly in Scotland, as you can read in Oystercatchers: from shingle beach to roof-top.

Lapwing and Golden Plover

There was a 68% drop in Lapwing figures between 1997/98 and 2015/16 and a 59% drop in Golden Plover. NEWS and WeBS counts of Lapwing and Golden Plover are difficult to interpret because birds move readily between the coast and inland fields, in response to local conditions such as lying snow and the wetness of fields. This is further complicated in more prolonged freezing conditions, when flocks of Lapwing fly west and south in search of feeding opportunities.

Grey Plover

3% use open coasts. 71% NEWS decline since 1997/98. (WeBS decline 41%).

The Grey Plovers that we see around the coasts of the UK in December and January breed in Siberia. It has been suggested that one of the reasons for the decline in numbers in Britain & Ireland may be related to new generations of youngsters settling in winter locations on the continental side of the North Sea – a strategy that may now work better, given that winters are not as harsh. It is interesting that losses on open coasts, which many would consider sub-optimal habitats, have been more marked than on estuaries. There’s a WaderTales blog about Grey Plovers.

Ringed Plover

82% use open coasts. 21% NEWS decline since 1997/98. (WeBS decline 47%).

Ringed Plovers are red-listed in the UK because of the decline in winter numbers and the importance of these islands of the hiaticula race. In NEWS III, the vast majority of UK birds were found in Scotland (see earlier table) but densities were highest around the coast of England.  Colour-ring studies in Norfolk showed that breeding individuals can adopt a range of migration plans – some marked birds never left the county and others had winter homes as far away as France, Scotland and Ireland. This dispersal is pretty typical of hiaticula race Ringed Plovers that nest in western Europe and southern Scandinavia. Other races travel very long distances (Well-travelled Ringed Plovers).

Curlew

42% use open coasts. 40% NEWS decline since 1997/98. (WeBS decline 26%).

Large numbers of Curlew arrive in the UK in the autumn, with a strong link between Finland and the estuaries of England and Wales. It is estimated that 20% of Europe’s Curlew winter within the British Isles and any change in numbers has significance for a species that is already listed as near-threatened by BirdLife International. The decline in numbers on open coasts has been greater than that seen in estuaries; it has been suggested that this may relate to the breeding origins of birds using different habitats.

Bar-tailed Godwit

15% use open coasts. 33% NEWS decline since 1997/98. (WeBS decline 21%).

Unlike Black-tailed Godwits, which seek out the gloopiest of mud, Bar-tailed Godwits are perfectly at home on sandy shorelines. Wintering birds are of the race lapponica; these breed in Northern Scandinavia, Finland and western Russia (more here). NEWS III tells us that there has been a larger decline in numbers in coastal areas than on estuaries, perhaps related to the relative suitability of the two habitat types.

Turnstone

68% use open coasts. 29% NEWS decline since 1997/98. (WeBS decline 29%).

Almost all of the UK’s wintering Turnstones are thought to be birds that breed in Greenland and Canada. Declines are consistent between NEWS and WeBS. A Northumberland study has shown that, as numbers have dropped, so birds have withdrawn into areas that are less disturbed by people and dogs (See Disturbed Turnstones). About three-quarters of the UK’s open-coast Turnstones are found in Scotland but they are more thinly spread here than in England.

Sanderling

69% use open coasts. 26% NEWS increase since 1997/98. (WeBS increase 8%).

As discussed in Travel advice for Sanderling, the UK is a pretty good place to spend the winter. Whether the same would have been true for previous generations of Sanderling, that were faced with much colder winters, is open to conjecture. Since 1997/98, the densities of Sanderling in Wales have increased by 712%, by 462% in Scotland and by 85% in England. How long will it be until Sanderling flocks successfully over-winter in Iceland?

Dunlin

6% use open coasts. 51% NEWS decline since 1997/98. (WeBS decline 38%).

Three races of Dunlin can be seen in the UK (as you can read in Which wader, when and why?). Wintering Dunlin are birds of the alpina race, arriving in the UK from Siberia, NW Russia, northern Finland and northern Scandinavia in the late summer. Open coasts around the UK are estimated to accommodate fewer than 20,000 Dunlin. To put this into context, there are six estuaries that each hold more than this total during the winter period.

Purple Sandpiper

Almost all on open coasts. 19% NEWS decline since 1997/98. (WeBS decline 34%).

The rocky coasts of the UK are home to Purple Sandpipers from the Arctic, with a suggestion that North Sea coasts south of Aberdeen mainly play host to birds from Spitsbergen and northern Scandinavia, with Greenland and Canadian birds more likely to be found further north and on the Atlantic coast. Coastal numbers have declined by 19%. The Highland Ringing Group has shown that the number of young Purple Sandpipers has been declining on the Moray Firth, suggesting a period of relatively poor breeding success for birds migrating from the northwest.

Redshank

22% use open coasts. 42% NEWS decline since 1997/98. (WeBS decline 21%).

Perhaps surprisingly, few Redshank cross the North Sea to spend the winter in the UK. Winter flocks are largely made up of home-grown birds and migrants from Iceland. The recent decline in Redshank numbers is thought to be a reflection of changing numbers of British and Irish breeders, although there are no monitoring schemes to provide information about Icelandic birds. Since 1997/98, the number of Redshank on open coasts has dropped by 42% but almost all of the losses have occurred in the period since 2007/08 (37% decline between 2007/08 and 2015/16). Redshank is currently amber-listed in the UK, reflecting falling breeding numbers, but ‘promotion’ to the red list cannot be far off. There is a WaderTales blog about the rapid decline in the number of Redshank breeding on salt-marshes: Redshank – the warden of the marshes.

Summary

The Non-estuarine Waterbird Survey 2015/16 revealed that there have been major declines in abundance of four species since NEWS II in 2007/08, only eight years previously: Lapwing (down 57%), Curlew (down 31%), Redshank (down 37%) and Turnstone (down 32%). Lapwing and Curlew are both red-listed in the UK. The only species to increase is Sanderling (up by 79%).

Given the magnitude of the changes revealed in NEWS III, it is unfortunate that this labour-intensive survey can only be carried out every eight to ten years. Ideally, it might be possible to survey at least a sample of sites on an annual basis. It is certainly to be hoped that funding can be found for NEWS IV within the next few years, and that volunteers will once more be prepared to count waterbirds on beautiful, if exposed, stretches of coastline.

The results of NEWS III are published in a paper in Bird Study:

Wader populations on the United Kingdom’s open coast: results of the 2015/16 Non-Estuarine Waterbird Survey (NEWS-III) and a review of population trends. Humphreys, E.M., Austin, G.E., Frost, T.M., Mellan, H.J., Boersch-Supan, P., Burton, N.H.K. and Balmer, D.E.


WaderTales blogs are written by Graham Appleton (@GrahamFAppleton) to celebrate waders and wader research. Many of the articles are based on published papers, with the aim of making shorebird science available to a broader audience.

Where to nest?

pic whimbrelThere is nothing more obvious than an Oystercatcher sitting on his or her nest, but a brooding Snipe can be invisible until almost trodden upon. Which strategy works better: nesting in plain view but laying cryptically camouflaged eggs or hiding yourself and your nest in a clump of grass? Which species is most likely to hatch a successful brood of chicks and in what circumstances? In a 2020 paper in IBIS, Becky Laidlaw and colleagues analysed nest site characteristics and nest locations of 469 wader nests in Iceland in order to provide some answers

The perils of ground-nesting

pic hatching whimbrel

Hatching Whimbrel eggs, with the tell-tale shell fragments that signal a nesting attempt has been successful

Almost all waders are ground-nesters, which makes them highly vulnerable to a wide range of nest predators. To reduce the risks of predation, different strategies have evolved. In some species, nests are placed out in the open, and the camouflage is provided only by mottled egg colouration that resembles the background. In other species, nests are secreted in vegetation, meaning eggs and incubating adults are concealed from predators.

In both groups of species, the risk of nests being predated might vary, depending on the surrounding habitat. For open-nesting species, for example, clutches that are laid in large patches of similar habitat may be harder for predators to locate. The same could apply to closed-nest species that hide their nests; Snipe nests may be tricky to find in extensive areas of long grass but perhaps more at risk if there are only a few suitable clumps of long grass that predators need to check out.

pic hidden Redshank

Iceland: a wader factory

tableAs discussed in previous WaderTales blogs, particularly Do Iceland’s farmers care about wader conservation? Iceland is hugely important as a European ‘wader factory’. As farmland elsewhere has become less suitable for species such as Redshank and Snipe, the global importance of the country has increased (see table alongside for most recent figures from an AEWA report)  With this in mind, it is important to understand the factors that underpin the population dynamics of Iceland’s breeding waders.

Working in South Iceland, Becky Laidlaw and her co-authors tried to find as many nests as possible during the summers of 2015 and 2016. This area is largely a mosaic of open habitats, although there are more patches of forestry than there were twenty years ago. Most of the Southern Lowlands area is farmed, on a gradient between intensive and semi-natural, and this is reflected in the distribution of breeding waders (see Farming for waders in Iceland).

pic rope

Dragging a light rope across the vegetation to flush nesting birds

For this project, nests were located by surveys from vehicles and on foot, through observation of incubating adults, systematic searching, incidental flushing of incubating adults and rope-dragging (dragging a 25 m rope, held between two fieldworkers, lightly across vegetation) to flush incubating adults.

The analysis in the resulting paper in IBIS focuses on 469 nests of three open-nesting species (Oystercatcher, Golden Plover and Whimbrel) and three species that hide their nests in tall vegetation (Redshank, Snipe and Black-tailed Godwit). The team recorded the habitat and vegetation structure around each nest (at the nest, within a 5 m x 5 m square and in a wider 50 m x 50 m square) and worked out which nests hatched successfully and which were predated. The date and time of predation were determined, where possible, with nest-cameras providing extra information for some nests. Cameras captured nest-predation events involving Arctic foxes, Arctic Skuas, Ravens and sheep.

Interestingly, 2015 and 2016 were very different wader breeding seasons. The graphic below shows the mean temperatures for the months from April through to July (encompassing the wader breeding season at this latitude) were much cooler in 2015 than in 2016, representing average monthly difference of between 1.5°C and 2.5°C. At high latitudes these figures translate into very different rates of vegetation growth.

pic pretty graph

First, find your nest

When nests were first located, their positions were marked and referenced using GPS. Eggs were floated in water to provide an estimate of laying date and thereby predict hatching date. As the chick develops within an egg, the density of the egg falls. A newly laid egg will lie on the bottom of the flotation vessel. Over the next few days the ‘blunt end’ rises until the egg is still touching the bottom but vertical. Eggs in the late-development stage float ‘point-end-down’, with the latest eggs floating at an angle to the vertical (method described by Liebezeit et al.).

pic skua-ed goldie eggs

This Golden Plover nest was probably predated by an Arctic Skua

Nests were considered successful if one or more eggs hatched, and predated nests were defined as those that were empty in advance of the predicted hatch date or those without any eggshell fragments in the nest (a sign of successful hatching). To determine the time and date of nest failures, iButton dataloggers were placed in a randomly selected subsample of nests. These loggers recorded a temperature trace every ten minutes. A sharp and permanent decline in nest temperature below incubation temperature indicates nest predation. In both study years, motion-triggered cameras were deployed on a sample of open-nesting species to determine the predator species active on these nests.

When each nest was first located, the percentage of eggs visible from directly above the nest was estimated and the habitat surrounding each nest was assessed in the field at three spatial scales: the nest cup, the 5 m x 5 m and the 50 m x 50 m area surrounding each nest. Details are in the paper.

Which nests survive through to hatching?

Over the breeding seasons of 2015 and 2016, the outcomes of 469 wader nests were assessed. 259 hatched successfully (55%), 192 were predated (41%), 13 were abandoned, 7 were trampled and 2 were mown. A nest-loss rate of 40% is fairly typical for ground-nesting waders, when compared to studies in different countries and habitats.

pic fox attack

Daily nest predation rates did not vary significantly in relation to the habitat heterogeneity or the extent to which the dominant habitat covered the area surrounding the nest, at either 5 m x 5 m or 50 m x 50 m scales. Most clutches were laid in habitats that were the same or similar to the surrounding areas. Where there were differences, the dissimilarity between the habitat at the nest cup and in the surrounding area did not influence daily nest predation rates for open- or closed-nest species. Although nest predation is high, at about 40%, incidence of predation events appears to be unpredictable – or even random.

pic snipe nest

In cold spring conditions, Icelandic Snipe are not able to hide their nests

Daily nest predation rates were significantly higher for closed nests (Redshank, Snipe and Black-tailed Godwit nests) in which a greater percentage of the clutch was visible. This suggests that the onset and rate of vegetation growth could potentially constrain the availability of suitable nesting locations for these species, and hence influence nest success, particularly among early season nests. This has been studied in Icelandic Black-tailed Godwits by José Alves and colleagues and is described in From local warming to range expansion.

For closed-nest species, the visibility of nests was significantly greater during the early part of the 2015 breeding season, when compared to 2016, due to slower grass growth in cooler conditions.  The higher predation rate of more visible nests of closed-nesting species was apparent even though nests were predated up to three weeks after egg visibility was measured. These findings suggest that early nesting attempts by concealed-nest species are unlikely to be successful in years when vegetation growth is delayed or slow. There can be major benefits of hatching early, with recruitment into breeding populations typically being lower for later-hatched chicks, so vegetation growth rates are likely to be really important to species that conceal their nests (Redshank, Snipe & Black-tailed Godwit in this study). However, given the ongoing trend for warmer springs at subarctic latitudes, the conditions in which early nests can only be poorly concealed are likely to be reducing in frequency.

In summary

pic goldie nest in habitat

Golden Plover nest set within a homogeneous habitat matrix

Perhaps surprisingly, nest predation rates were similar for open-nest and concealed-nest species and did not vary with vegetation structure in the surrounding landscape. However, nest-concealing species were about 10% more likely to have nests predated when the nests were poorly concealed, and the frequency of poorly concealed nests was higher at the start of the breeding season in colder conditions.

The paper at the heart of this blog is:

Vegetation structure influences predation rates of early nests in subarctic breeding waders. Rebecca A. Laidlaw, Tómas G. Gunnarsson, Verónica Méndez, Camilo Carneiro, Böðvar Þórisson, Adam Wentworth, Jennifer A. Gill and José A. Alves. IBIS. doi:10.1111/ibi.12827

pic sheep


GFA in Iceland

WaderTales blogs are written by Graham Appleton, to celebrate waders and wader research.  Many of the articles are based on previously published papers, with the aim of making wader science available to a broader audience.

@grahamfappleton

 

 

Fennoscandian wader factory

 

blog tem st

Nesting Temminck’s Stint – the smallest of the 22 wader species for which trends are reported

At the end of the summer, vast numbers of waders leave Norway, Sweden and Finland, heading southwest, south and south-east for the winter. In a 2019 paper by Lindström et al, we learn what is happening to these populations of Fennoscandian breeding species, as diverse as Temminck’s Stint and Curlew. The news for the period 2006 through to 2018 is basically pretty good – most populations have been stable and there are even some that have increased – but there are worrying signs for Broad-billed Sandpiper, Red-necked Phalarope and Whimbrel.

Breeding waders of Fennoscandia

blog mapAs a volunteer taking part in the Breeding Bird Survey (BTO/JNCC/RSPB) in the UK, I feel that I do my bit to monitor what is happening to local bird population – providing counts that build into national trends. The work involved in delivering indices for breeding waders across the area of Fennoscandia shown in the map is in a different league. Here, counters visit habitats as diverse as forests, wetlands, mires and tundra, within the boreal and arctic areas of Norway, Sweden and Finland. Some survey sites are so remote that access requires the use of helicopters.

Fennoscandia provides important breeding areas for a large set of wader species, and models suggest that these habitats may be particularly vulnerable to climate change, especially increasing summer temperatures. The 2006-18 analysis in Wader Study, the journal of the International Wader Study Group, presents population trends for 22 wader species. The trends are based on 1,505 unique routes (6–8 km long), distributed over an area that’s about four times that of the United Kingdom. 

blog surveyor

The surveys took place across the whole of Norway and Finland, and in the northern two thirds of Sweden, between 58°N and 71°N, which largely coincides with the boreal, montane and arctic regions of Fennoscandia. The systematic distribution of these routes ensures that the main habitats in these countries are sampled in proportion to the area they cover. The paper describes the methodologies used in the three countries and the way that data were combined, especially factors used to translate sightings of individuals into ‘pair-equivalents’.

Overview of results

blog mountainLooking at the results from across Norway, Sweden & Finland:

  • In terms of pure numbers, Golden Plover was the most commonly encountered wader species, followed by Wood Sandpiper, Snipe, Greenshank and Green Sandpiper.
  • The five most widespread species, seen on the highest number of routes, were Snipe, Green Sandpiper, Greenshank, Wood Sandpiper and Common Sandpiper.
  • Wader species richness and the total number of wader pairs were both higher with increasing latitude; the median number of wader pairs per 10 km increased from just below 3 at latitudes 58–60°N, to just above 26 at latitudes 69–71°N.
  • Using a multi-species indicator, the research team found no general change in wader numbers over the period 2006-18.
  • The trends were significantly negative for three species: Red-necked Phalarope (-7.9% per year), Broad-billed Sandpiper (-5.4% per year) and Whimbrel (-1.3% per year).
  • The trends were significantly positive for three species: Oystercatcher (+4.9% per year), Dunlin (+4.2% per year) and Wood Sandpiper (+0.8% per year).
  • There was no significant trend for another 16 species for which encounters were deemed to be frequent enough for analysis.
  • Population trends of long-distance migrants tended to be more negative than those of medium-distance migrants. This is discussed in detail in the paper.

blog wood sp habitat

Focusing on some key species

The Lindström et al paper is a tremendously rich source of information and references. Here are some species-specific highlights.

Oystercatcher. In the context of a species that is declining across NW Europe, the fact that there is a significant increase in Oystercatchers across Fennoscandia may be surprising. However, the authors note that there was a jump in numbers between 2006 and 2007 with little change since then.

blog l graphLapwing. The trends within the three Fennoscandian countries are very different. In Norway, there has been a dramatic decline (-15.2% per year during 2006–2018) and the Lapwing is now nearly extinct in many areas. The trend in Sweden is also significantly negative (-5.8% per year). In Finland, however, where the species is more widespread and numerous, there has been a strong increase (+5.9% per year) during the same period. See figure alongside.

Golden Plover. No significant change overall. There are some country-specific differences in trends, with a moderate decline in Norway being countered by a moderate increase in Sweden. 

Snipe. The overall trend of this species for each country indicates an initial decline followed by an increase. A similar pattern has been noted in the UK’s Breeding Bird Survey over the same period. 

blog whimbrel

Nesting Whimbrel

Woodcock. The trend for 2006–2018 is basically stable and similar in all three countries.

Curlew. There is no significant trend, overall, but populations in Norway and Sweden have declined at the same time that numbers in Finland have increased.

Whimbrel. Fennoscandian trend indicates a decline of 1.3 % per year. Whimbrel is doing poorly in Norway and Sweden but better in Finland. 

Wood Sandpiper. This widespread species has increased slowly (0.8% per year), a trend that is largely driven by Norwegian and Swedish populations.

blog wood sp

Wood Sandpiper was the second most commonly encountered wader

Redshank. The fact that no change was discernible, suggests that boreal and arctic populations are faring much better than the breeding populations further south in Europe. For example, see Redshank – warden of the marsh.

blog RK

Redshank – more obvious than most breeding waders encountered!

Spotted Redshank. The estimated annual decline for Spotted Redshank is 2.8% per year but the species is too thinly spread for this to provide significant evidence of a decline. This rate is very similar to the recent drop in the Wetland Bird Survey index in the UK. See Fewer Spotted Redshanks.

Broad-billed Sandpiper. This species has the second most negative trend among the 22 species analysed (-5.6% per year). The bulk of information comes from Finland where the trend is even more negative (-7.5% per year). Birds head southeast in the autumn to countries bordering the Indian Ocean – areas for which winter trend data are not available. The species is still considered to be of ‘least concern’ but perhaps this designation may need to be revisited?

Dunlin. Breeding birds in the survey area are largely of the alpina race. The overall trend is significantly positive (+4.1% per year), which is in sharp contrast to the strong declines of the schinzii subspecies that breeds around the Baltic Sea, western Finland and further south and west in Europe.

blog rnpRuff. There were major declines in the period immediately prior to this review (Lindström et al. 2015) but changes reported here are lower (-2.3% per year) and the decline is not statistically significant.

Red-necked Phalarope. The authors write, “This species has the most negative trend of all the 22 species [-7.9% per year], with most data coming from Sweden. We do not know the cause of this decline but, given that this species shares its south-eastern migration route with Broad-billed Sandpiper, whose population exhibits the second largest decline, the relevant problems might largely apply somewhere along the migration routes”.

Link to Britain & Ireland

As shown in Which wader when and why? there are strong migratory connections between Fennoscandia and the British Isles. Some waders, such as Green, Common and Wood Sandpipers, pass through on their way south in the autumn, whilst many more fly here for the winter, to take advantage of the warmer maritime climate.

Three wader species with particularly strong links between Fennoscandia and Britain & Ireland are still shot and eaten in these islands. Each autumn, large numbers of Woodcock, Golden Plover and Snipe cross the North Sea. It is difficult to ascertain figures for the number that are shot but there is agreement that the vast majority are winter visitors, as opposed to native birds. The results presented in the paper suggest that there have been no discernible changes in the Fennoscandian populations of these three game species in the period 2006-18. Two earlier WaderTales blogs focus on Woodcock and Snipe in Britain & Ireland:

blog goldie

There has been no significant change in Golden Plover numbers across Fennoscandia

Two WaderTales blogs about wintering waders in Great Britain and the island of Ireland were published in 2019, based on reviews in British Birds and Irish Birds. These were Do population estimates matter? and Ireland’s wintering waders. The six big losers, in terms of wintering numbers in these islands, were Knot, Oystercatcher, Redshank, Curlew, Grey Plover and Dunlin. Knot arrive from Greenland and Canada, with Grey Plover flying from Russia, but it is interesting to think about this Fennoscandian breeding analysis in the context of winter losses of the other four species.

  • Wintering numbers of Oystercatchers have dropped recently in Britain and in Ireland. The population is made up of migrants from Iceland (more about this here), very large numbers from Norway, birds that stay within the British Isles and smaller numbers from other European and Scandinavian countries. Given there is no discernible decline in Fennoscandia, it seems likely that much of the decline can be attributed to a major fall in Scottish breeding numbers (more about this here).
  • Most Redshank wintering in Britain & Ireland are of local or Icelandic origin. Fennoscandian numbers seem to be stable; if there were any changes, these would probably not be apparent in wintering numbers within the British Isles.
  • The Eurasian Curlew has been classified as ‘near-threatened’ and the species is known to be declining in many areas (see this blog about serious problems in Ireland). Ringing shows a particularly strong link between Finland, where breeding numbers seem to be increasing, and Britain & Ireland. The decline in British and Irish winter numbers is probably being driven by lower breeding numbers within the British Isles and in countries such as Sweden, Norway and Poland.
  • There is a theory that new generations of alpina Dunlin may be more likely to winter within Europe’s mainland estuaries, instead of continuing their westward migration across the North Sea. This might explain the apparent anomaly between the 4.1% per annum rise in Fennoscandian numbers and recent winter declines of 3% in Britain and over 20% in Ireland.

Going forwards

blog helicopter

Some of the survey areas were in particularly remote areas

Many of the study squares that were covered during these surveys are a long way from the main centres of human population in Norway, Sweden and Finland. The governments of the three countries are to be congratulated for supporting this important monitoring, which relied on the commitment of hundreds of volunteers. It is to be hoped that these surveys will continue and that further species-focused work will be able to explain some of the differences across Fennoscandia, particularly between eastern and western areas. The rapid declines in numbers of two species that migrate southeast each autumn (Broad-billed Sandpiper and Red-necked Phalarope) highlights the need for better information about what is happening on the flyway linking Fennoscandia with the Arabian Sea and coastal countries of the Indian Ocean.

Paper

Population trends of waders on their boreal and arctic breeding grounds in northern Europe: Åke Lindström, Martin Green, Magne Husby, John Atle Kålås, Aleksi Lehikoinen & Martin Stjernman. Wader Study 26(3)

Click on the title of paper to access it on the International Wader Study Group website. Paper is only available to members of IWSG. If you have read the whole of this blog you’ll probably want to join!

blog barwit

Nesting Bar-tailed Godwit in smart summer plumage


GFA in Iceland

Graham (@grahamfappleton) has studied waders for over 40 years and is currently involved in wader research in the UK and in Iceland.  He was Director of Communications at The British Trust for Ornithology until 2013 and is now a freelance writer and broadcaster.

 

 

Sixty years of Wash waders

wwrg tt balance

Weighing a Turnstone

The Wash Wader Ringing Group (WWRG)** started with a bang on 18 August 1959, when the team made a catch of 1,132 birds in a Wildfowl Trust rocket-net at Terrington, in Norfolk. Over the years, cannon have replaced rockets, catches have become generally smaller and the scientific priorities have been refined, but the Group continues to focus upon discovering more about the waders that use the Wash. This blog attempts to summarises what has been learnt about the waders that rely upon the Wash, the vast muddy estuary that lies between Lincolnshire and Norfolk, on the east coast of England.

** The Wash Wader Ringing Group changed its name to the Wash Wader Research Group in 2022, reflecting the broader range of studies that have evolved over the years.

Wee quiz: What’s the best match between these Wash waders and the countries that they are quite likely to have come from? Answers at the end of the blog:

  • Species: Bar-tailed Godwit, Black-tailed Godwit, Curlew, Oystercatcher, Sanderling & Turnstone
  • Countries: Canada, Finland, Greenland, Iceland, Norway & Russia

Sixty years ago, the first goal was to understand where the vast flocks of waders that visit the Wash came from – a task that would provide great insights into the way that the whole East Atlantic Flyway works. In this time, over 300,000 birds have been caught and ringed on the Wash, as you can see in the table below. Equally importantly, hundreds of bird-ringers from across the UK and scores of visitors from around the world have joined WWRG teams, in order to learn more about the study of shorebirds. Further international collaboration has been fostered through overseas visits by WWRG members and emigration of some key personnel. The impact of the Group is truly global, as you can read in the WWRG report for 2014/2015.

wwrg table

A total of 307,226 birds is impressive, especially when some of the species totals are compared to the national totals of the BTO Ringing Scheme for the whole of Britain & Ireland since 1909. WWRG is responsible for over 40% of the Grey Plover, Knot, Sanderling and Bar-tailed Godwit, with Grey Plover topping the list at nearly 60%. These are terrific achievements for a group of volunteers. I don’t have the figures but I reckon that Nigel Clark has been responsible for the largest number of catches.

wwrg box

Firing box connected to 4 cannon-nets

In the early days, rocket nets were borrowed from the Wildfowl Trust for an annual summer week of catches, but the development of cannon-nets gave opportunities for all-year ringing. The intensity of the Group’s activities grew in the 1970s, when there was a threat to build a freshwater reservoir on the mudflats. For a couple of years, Clive Minton (founder and leader) persuaded us to visit fortnightly, so that we could get better data on weight-gain and turn-over, using a mixture of cannon-netting and mist-netting. Everything we knew was published by the Group as The Wash Feasibility Study in 1975. These days, the Group gets together about ten times a year for catching and colour-ring-reading sessions.

wwrg oldies

By catching and ringing large numbers of the key species that visit the Wash, the Group was able to generate maps showing what are now well-known patterns of migration (see Which wader, when and why?). Early on in the Group’s history, there was a focus on nine species, with Black-tailed Godwit added as a tenth when numbers increased. Each of these species has its own section below. The maps were prepared for the Wash Wader Ringing Group 2016/2017 Report by Ryan Burrell, using data stored within the BTO archives. Blue dots represent WWRG-ringed birds that have been found abroad. Red triangles represent foreign-ringed birds caught on the Wash. The base maps used are by courtesy of Natural Earth (www.naturalearthdata.com).

Oystercatcher

wwrg map OCThe map alongside clearly demonstrates the strong link between the Wash and Norway. Other interesting things that have been discovered about Oystercatchers:

  • They live a long time. An Oystercatcher that we caught at Friskney on 30 July 1976 broke the longevity record for a BTO-ringed wader when it was shot in France on 4 April 2017 (41 years 1 month and 5 days). It was ringed as an adult so we don’t know the exact age – but it must have been at least 43 years old. There’s a WaderTales blog with a list of longevity records for BTO-ringed waders.
  • When life gets tough, Oystercatchers fail to complete their autumn moult, retaining some of their outer primaries for an extra year. The ability to complete moult and annual survival rates are both affected by cockle and mussel supplies on the Wash. There’s more about this in two papers in Biological Conservation and the Journal of Applied Ecology.

Grey Plover

wwrg GV GVIn the early days of the WWRG, Grey Plovers occurred in much smaller numbers than they do now. Writing in an article about the first 40 years of the Group, Clive Minton told the story of the first catch of 100, made in 1963, that was celebrated with three bottles of champagne provided by the late Hugh Boyd, delivering on an incentive that he had promised.

  • Over half of the Grey Plover that have been ringed in Britain & Ireland since 1909 have been ringed by WWRG since 1959 (58.9%)
  • All of the Grey Plover using the Wash breed in Siberia. Some birds spend the winter on the Wash but there are autumn moulting flocks of birds that will go on to winter in other parts of Britain & Ireland, and spring and autumn passage of birds that travel as far south as West Africa.
  • Grey Plover are late to leave the Wash, with the last departures not occurring until the start of June. Unsurprisingly, they are some of the last waders to return at the end of summer, which puts pressure on birds to finish moult before the short, cold days of winter. Some adults fail to complete primary moult, especially if food supplies are low. There is more about Grey Plover moult in this WaderTales blog.

wwrg map GV KN

Knot

wash knot

First-winter Knot (subterminal bands on wing coverts and, as yet, unmoulted juvenile fethers on upper-parts)

Knot (or Red Knot) are truly international waders, as is shown in this map of movements of islandica  (and a few canutus) birds  to and from the Wash. Several WWRG members have been heavily involved in efforts to understand the decline in numbers of the rufa subspecies in Delaware Bay (on the North American eastern seaboard) and Clive Minton has been at the heart of efforts to explain the sudden drop in survival of piersmai and rogersi adults that winter in Australia and migrate to Arctic Russia via the Yellow Sea (see Wader declines in the shrinking Yellow Sea).

  • We are still learning about Knot migration. The cluster of reports of WWRG-ringed birds in Northern Norway looks odd on this map projection but it turns out that this is a well-used stopping-off point for islandica Knot heading for northern Greenland and NE Canada. This route was first confirmed in 1985, when a joint Durham University and Tromsø University expedition caught 18 Wash-ringed birds in a total catch of 1703 birds.
  • The dot in Siberia looks odd but isn’t. This will be a bird of the canutus race, small numbers of which pause on the Wash in autumn and spring, on their way between the Russian Arctic and west Africa.
  • wwrg net set

    Setting cannon-nets

    Many birdwatchers visit the Wash in autumn and winter to see the swirling Knot flocks at Snettisham and Holme. If high tide is at first light, Knot and other waders sometimes roost on Heacham Beach, giving the occasional opportunity to make a significant catch. The most recent of these, on 11 February in 2012, included 2757 Knot, 77 of which were already wearing rings.

  • Knot numbers on the Wash are highest in autumn. After moulting, many birds fly west. Colour-flagging by WWRG is designed better to understand these movements.
  • The most recent analysis of wader populations in Great Britain showed that there was a drop of nearly 20% in wintering Knot numbers (from 320k to 260k) in less than a decade (see Do population estimates matter?). Regular catches on the Wash will help produce estimates of annual survival rates and age ratios of the islandica subspecies.

Sanderling

wwrg sanderlingThe biggest catches of Sanderling are generally in the summer, when the Wash is a meeting point for birds from Greenland and Siberia. July can sometimes see catches of 200 or more birds. Traditionally, a Sanderling catch was the curtain-raiser at the start of Wash Week, an opportunity for the whole team to make one catch before splitting into ‘Terrington’ and ‘Lincolnshire’ teams for the rest of the main summer trip.

  • Wintering Sanderling on the Wash are thought to be exclusively of the race that heads northwest in the spring, to Greenland via Iceland.
  • Late summer and spring see the addition of birds passing through on their way from/to Siberia and extra birds from Greenlandic breeding areas.
  • I well remember the first time we caught a Sanderling (on 26 July 1975) wearing an Italian ring (caught in Italy 9 May 1975). Thanks to Jeroen Reneerkens (whose work is covered in this blog) I now understand that this is probably a bird that migrates from Namibia to Greenland in spring, via the Mediterranean. It will have been on its way back to Namibia when caught in July.

wwrg map SS DN

Dunlin

wash dunlin

Sam Franks, looking for the buffy tips on inner coverts, which distinguish first-year birds from adults

Nearly half of the waders caught by WWRG have been Dunlin – a total of 140,168 up until the end of 2018. There were really big flocks of Dunlin in the 1970s but numbers have dropped over the years, with peak counts now half what they were, according to WeBS data.

  • We caught over 3,500 Dunlin in one week in 1976 but the annual total has exceeded 1,000 in only four of the last ten years. Partly, this reflects a change in behaviour in the summertime, with fewer waders roosting on fields and hence less catchable.
  • Three races of Dunlin visit the UK. Our winter birds are alpina, from Siberia, NW Russia and northern Scandinavia. A lot of July birds are schinzii, breeding in the UK and as far north as Greenland, and we occasionally try to convince ourselves that we have caught an arctica from northern Greenland.
  • Data collected for the WeBS survey suggest that national winter totals have dropped by over 40% in 25 years. This could perhaps partly be explained by a redistribution of alpina, with new generations of young birds settling in wintering areas on the other side of the North Sea. Warmer winters may well make this a more practical proposition than in the 1970s. There’s more about this in this paper.

Black-tailed Godwit

wash blackwit

Newly ringed Black-tailed Godwit, caught in a mist-net at night.

Black-tailed Godwits became a priority species in 1995, when Jennifer Gill (University of East Anglia) started a project to study the movements of individuals, using colour-rings. Nearly 25 years later, the WWRG-ringed Black-tailed Godwits have contributed data to numerous papers, largely focusing upon migration.

  • The Wash is a hugely important area for moulting islandica Black-tailed Godwits. Some birds stay in East Anglia for the winter but others move south and west within the UK, west to Ireland and south to France, Portugal and Spain.
  • There are several blogs about Black-tailed Godwits in this WaderTales contents list.

Bar-tailed Godwit

One of the key things that was learned from the sudden decline in annual survival rates in a range of species that use the Yellow Sea (as mentioned above) is a need for regular monitoring of marked birds. The WWRG’s Scientific Committee set up colour-flagging projects for Bar-tailed Godwit, Curlew and Grey Plover, in order to increase the reliability of estimates of annual survival for three species that the Group does not catch in sufficient numbers to generate good retrap histories. Birdwatchers can help by reporting colour-marked birds here.

wwrg barwit map etc

  • In Bar-tailed Godwits: Migration & Survival there is a comparison of the data generated by a catch of 505 Bar-tailed Godwits in 1976 with the information that has been generated recently, using colour-flags.
  • Bar-tailed Godwits are long-lived birds. A WWRG bird holds the current record for a BTO-ringed Bar-tailed Godwit: 33 years and 11 months between ringing in 1978 and recapture in 2008. BTO longevity records are discussed in this WaderTales blog.
  • Colour-ring reading is now a significant element of Group activities, as described by Rob Pell in the WWRG Report for 2016/2017.

Curlew

Back in the 1970s, Curlew were still hunted on the Wash (paté made from autumn-shot birds was reported to be very tasty). Shooting stopped in Great Britain in 1981, when the maximum winter count on the Wash had dropped to about 3,000 birds, and by 2003/04 the maximum winter count was 15,336. Since then, numbers have declined, in line with national and international trends.

wwrg curlew map etc

  • A large number of Curlew on the Wash in winter are from Finland and surrounding countries. Surprisingly few are of UK origin.
  • Birds wearing WWRG leg-flags have been observed breeding in the Brecks (Norfolk/Suffolk).
  • The Curlew is internationally designated as ‘Near Threatened’. Is this really true when we can still see a field with 1000 roosting Curlew in Norfolk? Answers here.

Redshank

wash redshThe latest population estimates suggest that Great Britain has lost 26,000 wintering Redshank in less than a decade, representing a drop of 20%. Perhaps WWRG data can be used to help to explain these declines? Here are some of the things we know:

  • The Redshank on The Wash in the winter are mainly a mixture of birds from around the Wash, across the UK and from Iceland.
  • In cold winters, Redshank wintering on the Wash die in large numbers. After a period of severe weather in 1991, nearly 3,000 wader corpses were collected from along the tide-line, about 50% of which were Redshank. The winter WeBS counts for Redshank dropped by 50% after this mortality event but have recovered somewhat since then.
  • An analysis of nearly 1,000 dead Redshank showed that about two-thirds were of Icelandic origin. There was a tendency for smaller birds to be more susceptible to cold weather mortality than larger birds of the same species (More information in this paper by Jacquie Clark)

wwrg map RK TT

Turnstone

wash ttWinter Turnstone are birds that will head for Greenland and NE Canada in the spring but recoveries of birds in Finland and other Scandinavian countries indicate a passage of continental birds. African recoveries of WWRG-ringed birds probably include birds from Canada/Greenland and Finland/Scandinavia.

  • Turnstone wearing US Fish & Wildlife Service rings are occasionally caught on the Wash. Some of these rings were put on by Guy Morrison and his colleagues in Alert, Ellesmere Island, Canada. Guy was an early member of WWRG. It’s a small world!
  • The first Wash Turnstone were colour-ringed in 1999, as part of a study to understand why birds were feeding on the docks at Sutton Bridge. There is a WaderTales blog about the resulting paper by Jen Smart and Jennifer Gill. Colour-ringing continues, to measure annual survival rates.
  • Turnstone have a reputation for eating almost anything (including dog excrement and a human corpse) so do not be surprised if you see a colour-ringed bird scavenging for chips on the Hunstanton sea-front.

A few more highlights

Ringed Plover: this is not one of the ten key study species but 1,432 have been ringed between 1959 and 2018. Some birds are local breeders that hardly move anywhere but other birds link the Wash with Greenland, northern Norway, Morocco and Senegal.

wwrg GKGreenshank: The Group supports a colour-ringing project that was initiated by Pete Potts, in Hampshire. More information here.

Spotted Redshank: During the period 1959 to 2018, WWRG ringed a total of 85 Spotted Redshank, representing over 20% of the total ringed in Britain and Ireland since 1909. Amazingly, sixty of these birds were ringed on the same day – 27 July 1975. There is a blog about this catch and the recent decline in the number of Spotted Redshank visiting the UK. Fewer Spotted Redshanks.

Ruff: Until its closure, WWRG members spent many a smelly night at Wisbech Sewage Farm. This was a great place to catch Ruff, Curlew Sandpipers, Green Sandpipers etc. in mist-nets. Group members wrote a paper about Ruff moult and migration.

Rares: Occasionally there are surprises! WWRG has caught one each of Stone Curlew, Pectoral Sandpiper, Broad-billed Sandpiper and Terek Sandpiper. The last bird features in this WWRG blog.

What do we know now?

Migration studies have revealed the importance of the Wash to half a million or more waders each year – birds that spend the whole winter, others that refuel in the spring and vast numbers that rely on the food supplies in the mud to provide the energy for the post-breeding moult. There’s a selection of papers that have included WWRG data here, on the Group’s web-site.

wwrg cr TTThe Group still aims to maintain its general ringing programme, so that a representative sample of the key species carry rings. Colour-ringing projects aim to provide survival estimates for Curlew, Bar-tailed Godwit, Grey Plover and Turnstone, with Greenshank and Black-tailed Godwit colour-rings contributing to migration studies. Birdwatchers who visit the Wash can help by reporting colour-marked birds here, on the WWRG web-site.

WWRG data have been used to help inform decisions about the future of the Wash but the threats keep coming. Studies of migration and seasonal turn-over in numbers contributed hugely to decisions to provide national and international protection to the area and to fend off the 1970s plan to build a freshwater reservoir on the rich mudflats. The information that has been generated by many generations of volunteers over a period of sixty years has been used to manage the level of shellfish exploitation, to inform decisions about wind turbine locations and to manage activities that can cause disturbance.

The Wash Wader Ringing Group is very keen for its data to be used – and not just for impact assessment studies. Click here to learn more.

Diamond Jubilee

PLI

Phil Ireland releasing a Curlew

Over one thousand people are estimated to have contributed to sixty years of the Wash Wader Ringing Group’s activities. We have lived in barns, rolled cars, dug tens of thousands of holes, carried nets for miles, made important catches, had depressing failures, got frostbite, been threatened by surge tides and made friends for life.

In the whole of this period, there have been only two leaders of the Group – Clive Minton* (1959-1981) and Phil Ireland (1981-present). Bird ringers, wader biologists and millions of waders owe them both a huge debt of gratitude.

You can read more about the history of WWRG on the Group’s website:

*Clive Minton died in a car crash a few months after this blog was written. Friends and colleagues have shared some wonderful memories on the IWSG website.

wwrg sunset

Photo at the top of this blog is by Cathy Ryden. Many thanks to her and to other photographers.

Wee quiz:

  • Bar-tailed Godwit – Russia
  • Black-tailed Godwit – Iceland
  • Curlew – Finland
  • Oystercatcher – Norway
  • Sanderling – Greenland
  • Turnstone – Canada

GFA in Iceland

Graham (@grahamfappleton) has studied waders for over 40 years and is currently involved in wader research in the UK and in Iceland.  He was Director of Communications at The British Trust for Ornithology until 2013 and is now a freelance writer and broadcaster.

Advertisements

Occasionally, some of your visitors may see an advertisement here,
as well as a Privacy & Cookies banner at the bottom of the page.
You can hide ads completely by upgrading to one of our paid plans.

UPGRADE NOW DISMISS MESSAGE

January to June 2019

blog CU postOne or two WaderTales blogs are published each month. The series is UK-based with a global reach. Suggestions of newly-published research on waders that might be of interest to birdwatchers who appreciate waders/shorebirds are welcomed. I am particularly keen to give feedback to colour-ring readers; they provide a huge amount of information that lies at the heart of these stories.

Click on a link in bold to read an individual blog.

You can sign up to receive an e-mail notification when a new blog is published.


GFA in IcelandGraham (@grahamfappleton) has studied waders for over 40 years and is currently involved in wader research in the UK and in Iceland.  He was Director of Communications at The British Trust for Ornithology until 2013 and is now a freelance writer and broadcaster.

Managing water for waders

blog L sittingYour task, should you choose to accept it, is to turn farmland into a haven for breeding waders. The only tools you have at your disposal are tractors and cows and we will give you permission to pump water out of nearby rivers when conditions allow. That’s how it started. These days the diggers look big enough to use on a motorway construction site!

If your aim is to maximise the number of pairs of breeding waders on your lowland wet grassland farm or nature reserve, then one of the key issues is to get the water levels right. The first  part of this blog focuses on providing an appropriate mix of ditches, pools and grazed grassland for species such as Lapwing, Redshank and Snipe and then keeping everything wet enough (but not too wet) during the important chick-rearing season.

The second part of the blog is not just about maximising the number of breeding waders on a nature reserve. It’s also about working with neighbouring farmers, in order to secure fresh water supplies for the future and to reduce the risk of salt-water inundations, associated with sea level rise. In the long-term, stakeholder engagement has proved far more important than habitat management, as you will read below.

Understanding water levels

When developing lowland wet grasslands for waders, an extra five cm of late-winter rain can make a huge difference, especially if you can capture as much as possible of the rain that falls or can draw water from a swollen river. Mark Smart, the Senior Site Manager for the RSPB’s Berney Marshes and Breydon Water reserve in East Anglia, understands grazing marshes and how to capture and distribute water, in order to provide the muddy edges where wader chicks find insects. An aerial photograph of Berney Marsh shows how Mark has designed a special landscape to capture winter rain – one that is ideal for Lapwings and other waders.

Mark has taken the lessons he has learnt on RSPB nature reserves and shared them widely, a contribution to conservation that earned him one of the 2018 Marsh Awards for Wetland Conservation from the Wildfowl & Wetland Trust.

From wheat and barley to ducks and waders

blog cow eatingThe marshes of the Norfolk Broads have been drying out for 2000 years. By the 1970s, and after over 400 years of farming, the Halvergate Marsh complex was on the point of being fully drained and by 1985 much of the wet grassland in which waders formerly bred had already been lost and turned into arable fields. At this point, the RSPB made its first purchase of land, as they tried to retain at least some of the threatened habitat which is so important to winter wildfowl and summer waders. At the same time, campaigning by local and national conservationists secured legal protection for the unique Broadland scenery and the species that rely upon the habitats it contains, thereby halting the advance of the combine harvesters.

The importance of Halvergate Marshes for wildlife has long been known, and in 1987 it became the site of the UKs first Environmentally Sensitive Area – the prototype for subsequent agri-environment schemes. Lowland wet grasslands are traditionally drained using ‘footdrains’ – narrow, shallow channels that connect low-lying parts of the fields with surrounding ditches, in order to drain them.

blog footdrain

The muddy edges of a footdrain

These same footdrains can be used to hold and manage surface water levels within fields, by blocking the ditch connections with sluices. In the 1990s, Mark pioneered the design and deployment of footdrains on lowland wet grasslands, and the kit needed for their construction. Through his skills, enthusiasm and collaborations with grassland managers throughout lowland England, footdrains and the water that they can contain are now a common sight. Many generations of wader families have enjoyed the invertebrate food that footdrains support.

The breeding season for waders is very short – with the first Lapwing claiming territories in March and most chicks fledged by the end of July. Outside these months, these wet grasslands provide excellent grazing for geese and ducks in the winter and cattle in the summer. The task of nature reserve managers is to work with graziers to try to ensure that cattle deliver appropriate sward heights for winter wildfowl and summer waders.

Not just water

fence 2By creating a hot-spot for nesting birds, within an intensively-farmed landscape, land-managers also produce a food-rich area for predators, attracted in by concentrations of eggs, chicks and sitting adults. Restricting the activities of species such as foxes and crows is an important part of the role of an RSPB warden, carried out through site management and active control measures. By focusing these activities in the winter period, the RSPB’s Halvergate Marshes team are able to stop corvids and foxes from setting up territories within the area that is managed for breeding waders. Electric fencing can help to prevent foxes moving onto the site in spring, while changing the way that core wader areas are managed helps to reduce fox/nest interactions by, for instance:

  • Adding shallow ditches in the right places can break up the site into compartments and reduce the likelihood that nests will be predated.
  • Leaving areas with long grass, that is good for small mammals and the mustelids and foxes that prey upon them, can change the focus of hunting activities.
  • Erecting temporary fencing, during at least the early part of the nesting season, can both provide protection and potentially increase the synchronicity of nesting attempts and hence the ability of birds effectively to mob predators.

blog L chickThere is more about these measures in these blogs, with links to papers from the RSPB and University of East Anglia team of conservation researchers:

There is annual management of the Berney site too, with foot-drains to be re-cut, spoil to be spread in ways that can provide a mix of water-levels and more muddy edges, and rotovation of some areas to increase the diversity of habitats. These techniques might seem rather different to the ones that are used by farmers but many of the other operations at Berney are the same as would be seen outside nature reserves, with fences to mend, stock to manage and creeping thistle and rush to ‘weed-wipe’.

blog rotovation

Rotovation, carried out in dry conditions, adds heterogeneity and creates bare, muddy areas

Measuring success

The development of Berney Marshes has been hugely successful. Back in 1987, there were only 13 pairs of wader breeding on the site – nine pairs of Redshank and four of Lapwing. The total for 2019 looks like being about 270 pairs – over twenty times as many.

blog RK graphRedshank: The graph alongside illustrates how Redshank numbers have changed across the decades. At the same time as Breeding Bird Survey (BTO, JNCC & RSPB) for England results revealed huge declines, with a loss of nearly half in the period 1995-2017, Redshank pairs on Berney Marshes have been increasing. Even on this site, there is a suggestion that the peak number of pairs may be in the past. Given the pressures on breeding Redshank on saltmarsh habitats (blog: Redshank – the ‘warden of the marshes’), providing breeding habitat in coastal marshes, inside sea-walls, may be particularly important. Hopefully, the latest earthworks (see later) will create more space for Redshank.

Left image below shows Redshank nest in a clump of grass. The right image shows a Lapwing nest in a newly-rotovated patch. 

 

blog L graphLapwing: Between 1988 and 1998, the number of pairs of Lapwing rose from 14 to 79, reaching a peak of 157 in 2010. Numbers vary, according to spring weather and water levels, with between 83 and 130 pairs in the years 2011 to 2019. The national decline in England was 28% between 1995 and 2017 (Breeding Bird Survey) – not quite as drastic as for Redshank but still worrying. Intensive studies at Berney have shown that productivity is only high enough to boost numbers in some years. The latest project by UEA and RSPB conservation scientists involves trialling temporary electric fences to provide protection for first clutches and broods. Hopefully Berney can become a net exporter of Lapwings in most years.

Oystercatcher: There were no Oystercatchers breeding at Berney back in 1997. The peak number of pairs was 18 in 2009, with an average of ten pairs in subsequent years. Nationally, numbers in England have increased but with major declines in Scotland, which is the species’ heartland within the UK. This is discussed in an earlier WaderTales blog.

Avocet: The RSPB’s logo species has been hugely successful, nationally, with the help of protection and habitat creation. The first pair of Avocets bred at Berney in 1992 and pairs have bred in most years since then, with over thirty pairs in nine years but no pairs in 2013 or 2014. The 2019 count is 35 pairs and there is potential for further growth in numbers across the site, with the creation of more island homes (see below).

blog combine AV

Combined harvesters have been replaced by nesting Avocets

Snipe: Despite all of the excellent habitat creation work, there have never been more than 8 pairs of Snipe recorded on Berney and only between 0 and 3 pairs in each of the last ten years. The underlying soils at Berney are clay-based, which may not suit this species.

Sharing the knowledge

blog RK ringed

Redshank chick: science is an important feature of the work at Berney

Although it’s great that the RSPB has been able to buy and develop land for breeding waders in the Yare Valley, the impact of their work has been far larger, thanks to management agreements with other landowners. Mark Smart and the RSPB have set up Broads Land Management Services, to deliver wet grasslands that attract the top tier of conservation payments for farmers working in the Broads. Much of the recent work has been part of the Water Mills and Marshes Project, funded by HLF and led by the Broads Authority. Using specialist ditch-cutting and spoil-spreading equipment, the team has been able to create wet features within top-quality grazing fields. This is not just a local initiative; the kit and the advice have had impacts on farms and nature reserves across the country.

For his work for wetland conservation, Mark Smart received a Marsh Award for Wetland Conservation from the Wildfowl & Wetland Trust in 2018. “Mark Smart received his award for his 17 years managing RSPB Berney Marshes in the Norfolk Broads. Over this period, he brought together landowners, conservationists, local authorities and scientists to improve the marshes for wildlife. Today more than 300 pairs of wading birds nest there each spring, and more than 100,000 waterbirds return to it each winter.”

blog somerleyton

Illustrations above shows work that has been completed at Somerleyton in Suffolk and a newly-fledged Lapwing.

blog DutchWorking with his wife, Jen Smart, who is a Principal Conservation Scientist at the RSPB’s centre for Conservation, Mark has added a Dutch dimension to the RSPB’s advice work by co-authoring Meadowbirds on the horizon of southwest Friesland.  This report has just been published by the International Wader Study Group.

Climate – ‘the new normal’

Fresh water is an increasingly important commodity in East Anglia – for farmers and for nature reserve wardens, looking to maximise agricultural and wader chick production. More extreme weather patterns are already producing periods of drought and intense periods of rain, while a rising sea-level is increasing the salinity of rivers and limiting extraction opportunities. Broadland farmers are looking for a reliable water supply, the Environment Agency is looking for ways to reinforce sea defences and for places to store fresh water, in order to avoid flooding, and the RSPB wants to hold more water in the late winter that can be used to keep areas wet in the early summer. With some lateral thinking, many of the needs of these key stakeholders can be met in partnership projects, as shown below

The Environment Agency’s need for material to raise sea defences provided Mark Smart with an opportunity to provide more pools and scrapes for breeding waders. It was a win-win solution; free habitat creation work for the RSPB and minimal movement of the clay and top-soil that the Environment Agency needed. In the images below, you can see this work in progress and the islands that are now being used by nesting Avocets.

blog defences

The most recent project is an ambitious water storage and flood reduction scheme for the whole of Halvergate Marsh. This will keep salt water out of these important grazing marshes and store fresh water for summer use. The £2 million Halvergate Marshes Water Level Management Improvement Scheme is a joint initiative, funded by DEFRA and delivered by the Water Management Alliance. The project involves a large number of stakeholders, including the Broads Internal Drainage Board, RSPB and neighbouring farming estates.

blog 8 km

The Water Level Management Improvement Scheme is a huge undertaking, with 8 km of new ditches, 240 piped culverts and 12 big sluices, that will create storage for 60,000 cubic metres of fresh water and systems to distribute this water over the course of a dry East Anglian summer. One of the most impressive features of the project, illustrating the imagination of the design team, is the Higher Level Carrier, a ‘flyover’ ditch system that passes over the top of existing wet grazing land to get water to some of the driest part of Halvergate Marshes (left picture below). This high-level water transportation route was constructed using locally-sourced clay, thereby creating shallow pools around which yet more waders are already nesting.

blog overpass

When designing this project, the opportunity was taken to develop opportunities for birdwatchers to see the birds that will be drawn into the wettest areas, by making sure that the ‘best bits’ are close to public access points on the Weavers’ Way, the 61 mile (100 km) long-distance path running from Cromer to Great Yarmouth.

Aspirations

Mark Smart has not finished yet! Plans are afoot to develop the RSPB’s land that is closest to Great Yarmouth, recently purchased using a WREN grant. If agreed, this can provide an alternative, safe high-tide refuge area for tens of thousands of waders and wildfowl that roost on the mud and saltmarsh at the mouth of the Yare. Their current high-tide refuge is threatened by sea-level rise and developments proposed for the outskirts of Great Yarmouth.

blog aspirations

This proposed roosting area will be part of an extension to the Halvergate Marshes Water Level Management Improvement Scheme, which will add another 10,000 cubic metres of water storage. Alongside flood alleviation and fresh-water conservation, this scheme will create fifty hectares of additional shallow wader and waterfowl scrapes adjacent to Breydon Water.

blog Wood spThe new scrapes should not only attract wintering and breeding birds but also many passage waders, such as the Wood Sandpiper pictured to the right. The whole scheme has the potential to be another win-win-win-win, for the owners of low-lying properties, for Broadland farmers, for internationally important bird populations and for local and visiting birdwatchers.

Read more

Information about the RSPB’s Berney Marshes & Breydon Water reserve can be found on the RSPB’s website. Click here

There is information about the Water, Mills and Marshes project here.

blog AV


GFA in Iceland

WaderTales blogs are written by Graham Appleton, to celebrate waders and wader research.  Many of the articles are based on previously published papers, with the aim of making wader science available to a broader audience.

@grahamfappleton

 

Redshank – the ‘warden of the marshes’

blog nesting RKAre subsidies that are designed to protect the biodiversity of Britain’s saltmarshes, delivering the planned, conservation benefits? In particular, is this investment supporting populations of amber-listed Redshank?

About 25,000 pairs of Redshank are thought to breed in the United Kingdom (link to APEP), with about half of these nesting in coastal saltmarshes. In recognition of the importance of saltmarshes, agricultural grants are available to support their management, with a focus on providing an appropriate level of grazing for a range of plants, birds and insects. In their 2019 paper in the Journal of Applied Ecology, Lucy Mason and her RSPB colleagues ask some serious questions – are these agricultural subsidies being well spent?

Saltmarsh grazing is an important conservation prescription that is used to try to boost, or at least maintain, populations of breeding waders, particularly Redshank, as well as to conserve the unique herb-rich habitats in which they hide their nests and raise their young. This study follows on from an earlier paper that showed that more than 50% of saltmarsh-nesting Redshank in Great Britain were lost between 1985 and 2011, and three papers by Elwyn Sharps on the impacts of cattle that graze saltmarshes during the Redshank breeding season (about which there is more below).

Why worry about Redshank?

The latest population estimate for Redshank in the United Kingdom is 25,000 pairs, as many as 50% of which are birds nesting on saltings. Redshank is an amber-listed species of conservation concern in the UK, with the most recent population changes showing a drop of 44% between 1995 and 2017 (Breeding Bird Survey) and a larger decline over the period since 1990.

pop grapic

What are saltmarshes?

blog flora

Rich plant communities

Saltmarshes are intricate, dynamic habitats, where land meets sea. They are highly productive ecosystems, rich in plants, birds and insects. Traditionally, they would have been grazed by herbivorous mammals and waterfowl but, in the absence of free-roaming animals, the only way to maintain the short but diverse swards favoured by specialist plants and animals is to employ the services of cattle and sheep. Although saltmarsh still covers large areas, it is estimated that over 50% has been lost or degraded globally, thanks to reclamation and erosion. Further losses are occurring, as saltmarshes get squeezed between rising sea levels and the hard sea defences that protect coastal settlements and farmland.

The structure of saltmarsh is created by the way that water moves, as waves dissipate their energy and deposit silt during higher, spring and storm tides and the water then runs back off the salting. The latter process creates branching creeks that drain the marsh, from small meandering ditches, that are just big enough to catch a foot and twist an ankle, to waist-deep, fast-flowing channels with slippery, muddy sides.

blog deep creek

Deep creeks of outer marsh

Anyone who has been out on a marsh will know that, with some local knowledge, it is possible to make your way from the sea-wall to the edge of the saltmarsh along a route that lies between two creek systems. On the other hand, travelling along the muddy, salting edge parallel to the sea-wall is difficult, as it involves crossing creeks. Grazing animals face the same navigation problems; it’s a lot easier to graze wide expanses of the upper marsh than the outer areas that are dissected by deep creeks. As discussed below, these upper areas, with a mixture of short grass and clumps of longer grass, are also the ones that are favoured by breeding Redshank.

How many Redshank breed on saltmarshes?

A 2013 paper by Lucy Malpas (now Lucy Mason) in Bird Study brought together evidence of declines in saltmarsh-breeding Redshank over a 26-year period. An estimated total of 21,431 pairs were found to be breeding on British saltmarsh in 1985 but this had dropped to 11,946 pairs in 2011, with the highest proportion of the remaining population found in East Anglia. The 2011 survey showed that there were regional variations (see table), with the biggest declines in Scotland. Looking at the way that saltmarshes were managed, Lucy found that Redshank declines were less severe on conservation-managed sites in East Anglia and the South of England, where grazing pressures remained low, but more severe on conservation-managed sites in the North West, where heavy grazing persisted.

tableAt the end of this Bird Study paper, Lucy and her colleagues suggest that saltmarsh-breeding Redshank declines are likely to be driven by a lack of suitable nesting habitat. Conservation management schemes and site protection, implemented since 1996, appeared not to be delivering the grazing regimes and associated habitat conditions required by this species, particularly in the northwest of England. Although habitat changes may not be linked to unsuitable grazing management in all regions, they suggested the need for a better understanding of grazing practices and consideration of potential long-term management solutions.

Grazing levels and Redshank numbers

Intensive grazing leads to a very short uniform sward, lighter grazing produces a more uneven patchy sward with diverse heights, whilst no grazing can leave saltmarshes with dense communities of coarse grasses. For Redshank, that need clumps of grass in which to hide their nests and more open areas in which chicks can feed, light grazing is a key management tool.  Elwyn Sharps and colleagues, working on the salt marshes of the Ribble Estuary in northwest England, were interested to see how grazing regimes worked for the local Redshanks. Elwyn showed that the risk of Redshank nest predation increased from 28% with no breeding-season grazing to 95% with grazing of 0.5 cattle per hectare per year, which is still within the definition of light grazing.

blog tryptich

In follow-up work, Elwyn showed that livestock play an important role in creating the clumps of Festuca rubra habitat preferred by Redshank nesting on the Ribble Estuary but that even low-intensity conservation grazing can create a shorter than ideal sward height, potentially leaving Redshank nests more vulnerable to predators. There is more about this in the WaderTales blog: Big Foot and the Redshank Nest.

blog high salting

Grazing the higher saltmarsh

One of the missing elements from Elwyn’s first two papers about grazing levels was an understanding of the behaviour of cattle on saltmarsh. In the next piece of work, Elwyn and colleagues tracked the movements of individual cattle, using GPS collars, and assessed the vulnerability of nesting Redshank, using dummy nests. In a 2017 paper in Ecology & Evolution, they showed that cattle spend their time in the same areas of saltmarsh as the ones in which Redshanks like to nest. Their conclusion is that “grazing management should aim to keep livestock away from Redshank nesting habitat between mid-April and mid-July, when nests are active, through delaying the onset of grazing or introducing a rotational grazing system”.

Do conservation payments deliver?

To assess whether conservation grazing is being achieved, and whether agri-environment schemes are effective in delivering this management, Lucy Mason and her colleagues conducted a national survey of English saltmarshes, scoring the management on each site as optimal, suboptimal or detrimental, based on five aspects of grazing (presence, stock type, intensity, timing and habitat impact). They surveyed 213 saltmarsh sites in three regions during 2013, representing 50% of the vegetated saltmarsh in England. Of the study sites, 114 (54%) received payments for saltmarsh management and/or conservation grazing options through Higher Level Stewardship, or the Countryside Stewardship Scheme. The annual cost of saltmarsh and grazing management options in the marshes that were studied was £543,075 for 10,218 ha of saltmarsh, equating to over £5 million spent on saltmarsh management options over the course of 10 years.

blog muddy creekTo assess grazing levels, the team visited each site up to four times during the core grazing period (April–October), to count cattle. They also assessed the longer-term impact of grazing on saltmarsh habitat, by measuring sward height and heterogeneity. Combining the measurements of site condition and analysing the results produced the following key findings:

  • blog nest

    Nest hidden in clump of grass

    Although most saltmarsh sites in England that are capable of supporting grazing are grazed by livestock, conservation grazing is not being achieved.

  • Nationally, the biggest management failings relate to the timing of grazing and the way that grazing impacts upon habitat structure.
  • There were regional differences in scores relating to stock type, grazing intensity, grazing timing and habitat impacts, but no single region scored higher than others overall.
  • Sites with Agri-Environment Scheme (AES) agreements were no more likely to be grazed than sites without AES – some subsidies were being paid without any active grazing taking place.
  • AES reduced grazing pressure but not sufficiently to achieve optimal conservation grazing requirements, indicating that AES has been an ineffective conservation mechanism on saltmarsh.
  • In the East, older AES sites scored substantially higher and approached optimal levels, suggesting that managers and advisers can improve outcomes by working together over longer periods.

blog wet RK

Improving the system

The authors argue that, although there is sound scientific evidence as to how saltmarshes should be managed, to provide positive conservation outcomes, there are problems when it comes to the translation of evidence into recommendations for hands-on management. It is also difficult to encourage land managers to implement recommendations when these go against traditional farming practices and economic gain. To improve the situation, Lucy and her colleagues suggest that:

  • When establishing agreements, it is helpful to provide detailed prescriptions that can guide land-managers.
  • AES payments need to take account of the costs of grazing a complex environment, which means thinking about the availability of cattle of appropriate ages at the right times of year, provision of fresh water and high-tide refuges, and the use of fences to divide up the saltmarsh, in order to provide a rotational grazing system.
  • Prescriptions that focus on numbers of cattle and timing of grazing are easier to follow than ones that focus on intensity and habitat condition.
  • Additionally, a more detailed and reliable system of auditing would be beneficial, to ensure that management activities take place to the necessary standard prior to payments.
  • Moving to a results-based scheme, where payments are made based on desirable outcomes, rather than on evidence of management, may improve the overall conservation value and economic efficiency of saltmarsh AES options.

Blog JoshIn conclusion

Raising cattle on saltmarsh is hard work, in terms of stock control, but requires no fertiliser inputs.  These ‘mobile mowing units’ stop saltings from becoming long and rank, thereby creating spaces in which a rich plant and grass community can flourish, where geese and waterfowl can graze during the winter months, and potentially providing nesting spaces for breeding waders, such as the amber-listed Redshank, breeding numbers of which are still declining.

Lucy and her RSPB colleagues conclude that Agri-environment Schemes are the only mechanisms through which saltmarsh conservation grazing can be implemented on a national scale, so it’s important to make sure that they are as effective as possible. By working together, it is hoped that policymakers, researchers and managers can refine conservation guidelines which are used to create management schemes that attract subsidies. They suggest that better value could be achieved through more sensitive use of current management activities or perhaps by linking payments to conservation outcomes, rather than on evidence of management.

blog cr RKThe noisy warning calls of a pair Redshank, as they encourage their chicks to hide, have earned the species the title ‘warden of the marshes’. Their calls also appear to be a warning cry about the state of Britain’s saltmarshes, despite the large amount of money being provided through agricultural subsidies and the good intentions of conservation organisations, agricultural advisers and graziers.

You can read more here:

Are agri-environment schemes successful in delivering conservation grazing management on saltmarsh? Lucy R. Mason, Alastair Feather, Nick Godden, Chris C. Vreugdenhil & Jennifer Smart. Journal of  Applied Ecology. May 2019.

blog wide expanse


GFA in Iceland

WaderTales blogs are written by Graham Appleton, to celebrate waders and wader research.  Many of the articles are based on previously published papers, with the aim of making wader science available to a broader audience.

@grahamfappleton