On the beach: breeding shorebirds and visiting tourists

Rising sea levels, stormier weather, coastal development and more people are putting increasing pressures upon shorebirds that nest on beaches. A paper about the breeding waders of Norfolk & Suffolk (UK) coasts illustrates the importance of understanding human behaviour when trying to maintain (or create) space for breeding plovers. This paper will be of particular interest to conservationists trying to support breeding populations of species such as Ringed Plover, Kentish Plover, Piping Plover and Snowy Plover.

The problems of disturbance

Around the globe, nesting plovers are being threatened by human disturbance. Local initiatives to reduce these impacts include the installation of electric fences, recruiting volunteer wardens and changing local bylaws. You can learn more about which interventions work from Conservation Evidencethere’s more about this at the end of this blog.

Panning out, to look at the bigger picture, is it possible to determine where conflicts between breeding birds and tourists are likely to occur, so that one can try to resolve the problems before they start? Can this information help to inform planning decisions?

Oystercatcher with chick

Ringed Plovers and Oystercatchers

The coastline of Norfolk and Suffolk should be an ever-changing environment, dominated by sand and shingle beaches. Coastal defences artificially maintain the barrier between sea and land but sea-level rise is predicted to over-top and destroy sea walls during storm events. How will East Anglia’s beach-nesting waders cope with squeezed beaches at the same time as East Anglia is seeing increasing tourist numbers? In a 2020 paper in Global Ecology & Conservation, Jamie Tratalos and colleagues from the University of East Anglia investigated the distributions of nesting Ringed Plovers and Oystercatchers around the beaches of Norfolk and Suffolk, relating settlement patterns to visitor numbers.

Snettisham beach – sunny weather is not great for the local breeding Ringed Plovers

Ringed Plovers and Oystercatchers breed on sand and shingle beaches that are also attractive to people. They are prone to disturbance, especially by dogs that are allowed to run free, as discussed by Gómez-Serrano (2021). Nests can be trampled, incubation can be interrupted and chicks can be killed. Liley and Sutherland (2006) showed that, over a 9 km stretch of Norfolk coastline, Ringed Plovers bred less successfully when exposed to disturbance by beach visitors, and population declines in this species have been linked to human disturbance (Birds in England by Brown & Grice, 2005). Human recreation has also been shown to be associated with reduced breeding success in Eurasian and other oystercatcher species (Tjørve & Tjørve, 2010), and Ens and Underhill (2014) suggest that increased human use of the coastal zone, combined with increased risk of nest flooding and loss of wetlands, may threaten the conservation of oystercatchers around the world.

Ringed Plovers can have several breeding attempts in the course of a summer

UK breeding populations of Ringed Plover have declined in recent decades, from a conservative estimate of approximately 8400 pairs in 1984 to 4070 in 2007 (Conway et al., 2019) and the species is now red-listed (see the WaderTales blog: Nine red-listed UK waders). Oystercatchers have undergone considerable Europe-wide decline in recent decades and the species has been classified as ‘Near Threatened’ globally (IUCN, 2020).

Counting birds and people

In 2003, when the study at the heart of the Tratalos paper was carried out, East Anglia’s beaches between the Wash and the River Stour held about 3% of the UK’s breeding Ringed Plovers, as well as relatively small numbers of breeding Oystercatchers. As part of a bigger climate change research programme, Tratalos et al were keen to understand what drove the distribution of Ringed Plovers and Oystercatchers, in order to be able to include conservation actions in plans to manage the changing coastline of Norfolk and Suffolk, especially associated the abandonment of outer sea defences. Their research was written up in a 2020 paper in Global Ecology & Conservation.

In the study, the authors examined a 212 km stretch of coastline, mapping all breeding pairs of Ringed Plover and Oystercatcher, as well as the environmental characteristics of beaches. Data on the location of bird territories, and the habitats in which they were found, were collected by Dave Showler in the period between early April and mid-June in 2003. Details of survey methods can be found in the paper.

Map data from Bird Atlas 2007-11 (BTO, BirdWatch Ireland and SOC)

Visitor numbers to different beaches were assessed by filming from a light aircraft, flying at an altitude of 150 metres. 38,634 human visitors were mapped from three flights during sunny weekends in April, June and August, when the tide was at approximately mid phase. There were pronounced peaks in visitor numbers along the coastline, with 19 of the 1003 beach sections experiencing over 10 times the average number of visitors and 231 sections hosting none.

The key findings from surveys and analyses were:

  • Of just over one thousand 200m sections of beach surveyed, 183 beach sections contained Ringed Plover territories (266 breeding pairs) and 117 contained Oystercatcher territories (223 pairs).
  • There were more occupied territories in less-visited areas, for both species. See table relating the visitor index to occupation of sectors. An index of 0.13 means that visitor numbers were 13% of the mean across all sectors.
  • No Oystercatchers were found breeding in sectors where the visitor index was higher than 2.8. No Ringed Plovers were found in sectors where the index was above 5.5.
  • Ringed Plovers territories were more common in sections that had dunes at the back of the beach and where the beaches were broader at low tide.
  • Oystercatchers appeared to need space above the high-water mark, as well as a broad intertidal area.

The associations between territories and habitat enabled the team to predict the number of pairs of waders that might have been present in areas which were highly impacted by visitors. If visitor numbers were reduced to zero across the whole study area, breeding potential could be hugely increased.

Feeding on the mud at low tide – Ringed Plovers and Oystercatchers need a broad intertidal area
  • The authors predict that there would have been an additional 90 beach sections where Ringed Plovers could potentially establish territories, suggesting that tourism and the local use of beaches has already removed 33% of Ringed Plover breeding habitat.
  • There were 96 sections where breeding Oystercatchers might have been expected to be found, so they have already lost 45% of potential habitat.

Practical considerations

These results suggest that human activity on beaches influence the location of breeding territories of Ringed Plovers and Oystercatchers, with both species using territories where the number of human visitors was relatively low, when considered both at the scale of the whole Norfolk and Suffolk coast, and locally within areas of this coastline.

In the absence of people, there appear to be clear features of the areas that determine if sectors are used by both wader species for breeding. This makes it possible to predict places where increased access could cause problems so that, ideally, tourism might be encouraged in areas that are less likely to be used by breeding waders. Unfortunately, the beaches that are great for red-listed Ringed Plover – with a back-drop of sand dunes, a sandy beach to walk along at high tide and a gently-shelving intertidal area – are also ones that attract people. This makes it harder to create discrete ‘people zones’ and ‘wader zones’ than might otherwise be the case.

Access points create issues for breeding wader but the effects of most visitors are localised. Unless birdwatching or exercising a dog, the typical tourist will not stray more than 300 metres from a carpark, as indicated in the graphic above. In less-disturbed beach sections, where Oystercatchers set up territories, chicks can hide in upper-beach vegetation until parents indicate that it is safe to come out to be fed.

When Emma Coombes (Global Environmental Change, 2009) asked visitors to Norfolk’s beaches what they were looking for, there was a remarkable consistency in the responses from dog-walkers, sun-bathers and birdwatchers. They all wanted to be on remote flat, sandy beaches, with sand dunes. They would appreciate a car park and toilets too. As soon as such facilities are provided, of course, visitor numbers increase, the remoteness is lost and so are breeding waders, unless fences and wardens are introduced.

Winterton-on-Sea beach is promoted as a tourist location with access to a national nature reserve

Planners have few tools available to them, when it comes to protecting stretches of coastline. All that they can control is development (e.g. new roads, housing and tourist accommodation) and facilities such as car parks and toilets. This paper clearly shows the need to understand the local features that are needed by nesting waders and the importance of documenting current distributions, so that local and national planning authorities have the information they need when planning for the future.

Paper in Global Ecology & Conservation

Vulnerable Ringed Plover chick

Regional models of the influence of human disturbance and habitat quality on the distribution of breeding territories of common ringed plover Charadrius hiaticula and Eurasian oystercatcher Haematopus ostralegus. Jamie A. Tratalos, Andy P. Jones, David A. Showler, Jennifer A. Gill, Ian J. Bateman, Robert Sugden, Andrew R. Watkinson & William J. Sutherland.

Conservation evidence

Before trying a new conservation technique on a local patch, it is worth checking out what has been tried elsewhere. A quick visit to the Conservation Evidence website and a search on ‘beaches’ and ‘bird conservation’ produced a list of 26 actions that have been written up in papers or grey literature. Although many of these interventions are more appropriate to tern conservation than shorebird conservation, a few seem to be particularly relevant to people who are considering how to help breeding Charadrius plovers. Five potential actions are assessed as ‘likely to be beneficial’

  • Use signs and access restrictions to reduce disturbance at nest sites
  • Physically protect nests with individual exclosures/barriers or provide shelters for chicks of waders
  • Protect bird nests using electric fencing
  • Physically protect nests from predators using non-electric fencing
  • Physically protect nests with individual exclosures/barriers or provide shelters for chicks of ground nesting seabirds
Dogs cannot read ‘no entry’ signs, designed to save space for breeding waders and terns

The Conservation Evidence website aims to make scientific research available to conservation practitioners. Anyone considering any of the interventions listed above can see a quick synopsis of what worked (and what didn’t work) in which circumstances. Anyone who has discovered another successful management technique is urged to write up their study – so that it can be added to the database.


WaderTales blogs are written by Graham Appleton (@GrahamFAppleton) to celebrate waders and wader research. Many of the articles are based on published papers, with the aim of making shorebird science available to a broader audience.

Waders on the coast

The UK’s coastline is of international importance because of the numbers of waders that it supports. In winter it accommodates over a third of Europe’s wintering Oystercatcher, Ringed Plover, Bar-tailed Godwit and Knot, as well as an increasing number of Sanderling.

Wintering waders on the UK’s estuaries are counted every month but those on the 17,000 km of open coast are only counted once a decade. There are good reasons for this disparity, given the much higher development pressures on estuaries and the need for regular monitoring of sites that are designated and protected. However, this does mean that we have very little information about wintering Purple Sandpipers, the vast majority of which are not covered by monthly Wetland Bird Surveys (WeBS). Over three-quarters of the UK’s Ringed Plovers are missed too, along with over half of the Sanderling and Turnstones and nearly half of the Curlew.

The last Non-estuarine Waterbird Survey took place during the winter of 2015/16, as discussed in the WaderTales blog NEWS and Oystercatchers. Jenny Gill and I undertook counts on Great Cumbrae and along stretches of the Clyde coast, in Scotland, an area we had also covered for the 2007/08 survey. We were concerned to count only 84 waders in 2015, compared to 206 in 2006. Details are in the table alongside. We hoped that 900 other people, walking along a total of 9000 km of the UK’s coastline, had been more successful!

The paper summarising NEWS results for the whole of the UK and making comparisons with previous surveys in 1997/98 and 2006/07 was not published until 2021. In the intervening period, the counts were included in two papers about wintering populations of waterbirds in Great Britain and Ireland, that were discussed in Do population estimates matter? and Ireland’s wintering waders. This blog draws heavily on a Twitter thread from the Wetland Bird Survey and the BTO’s press release. The new paper is published in Bird Study.

The big picture

In December 2015 and January 2016, NEWS III volunteers walked along amazing, long, white beaches, surveyed rocky headlands and scrambled the lengths of boulder-strewn coves. Not every kilometre of the coast could be visited but the fact that 50% coverage was achieved meant that estimates could be made of the whole coastline of the United Kingdom, together with the Isle of Man and the Channel Isles.

In terms of absolute numbers, Scotland has consistently supported the majority of the population across all non-estuarine waterbird surveys for Oystercatcher, Ringed Plover, Golden Plover, Lapwing, Purple Sandpiper, Bar-tailed Godwit, Curlew, Redshank and Turnstone. Although this is likely to reflect the relative length of the coastline for Scotland (12,714 km) compared to England (2,705 km), Wales (1,185 km) and Northern Ireland (328 km), Purple Sandpiper, Curlew, Redshank and Turnstone still appear to show a bias towards Scotland.

Using the information collected during the survey, BTO scientists were able to extrapolate estimates of the numbers of open-coast waders in the different countries of the UK and its island dependencies (see table below). The results are published in the journal Bird Study and summarised in the table below.

To evaluate the potential importance of the open coast, NEWS estimates for Great Britain in 2015/16 were compared to average population estimates. For eight species, the open coastline accounts for over 20% of the winter population. The figure of 113% for Purple Sandpipers suggests that more birds may have been present on the coasts of the UK in 2015/16 than in an average year or that the population estimate needs to be revisited. There are no Lapwings or Golden Plover in the table below, as there is no recent, reliable estimate of the national wintering population for either species. The Greenshank line is in italics as the sample size is small.

Ten species are considered in detail in the following sections. The maps were downloaded from the BTO website on 20 March 2021 (https://www.bto.org/our-science/projects/ringing/publications/online-ringing-reports). Comparisons are made between results from the Wetland Bird Survey (WeBS) and the Non-estuarine Waterbirds Survey (NEWS).

Oystercatcher

26% use open coasts. 21% NEWS decline since 1997/98. (WeBS decline 22%).

In December 2015, as we walked around the coast of Great Cumbrae in the Firth of Clyde, pairs of Oystercatchers were already staking out their territories, probably not having travelled anywhere since the previous summer or perhaps even in the last twenty years! Wintering flocks that we saw may well have included breeding birds from inland sites in Scotland, from Iceland and from Norway, together with juveniles and non-breeding sub-adults. NEWS III found that densities of coastal Oystercatchers were highest in Wales but that this is the area in which there had been the biggest declines. Breeding numbers have fallen rapidly in Scotland, as you can read in Oystercatchers: from shingle beach to roof-top.

Lapwing and Golden Plover

There was a 68% drop in Lapwing figures between 1997/98 and 2015/16 and a 59% drop in Golden Plover. NEWS and WeBS counts of Lapwing and Golden Plover are difficult to interpret because birds move readily between the coast and inland fields, in response to local conditions such as lying snow and the wetness of fields. This is further complicated in more prolonged freezing conditions, when flocks of Lapwing fly west and south in search of feeding opportunities.

Grey Plover

3% use open coasts. 71% NEWS decline since 1997/98. (WeBS decline 41%).

The Grey Plovers that we see around the coasts of the UK in December and January breed in Siberia. It has been suggested that one of the reasons for the decline in numbers in Britain & Ireland may be related to new generations of youngsters settling in winter locations on the continental side of the North Sea – a strategy that may now work better, given that winters are not as harsh. It is interesting that losses on open coasts, which many would consider sub-optimal habitats, have been more marked than on estuaries. There’s a WaderTales blog about Grey Plovers.

Ringed Plover

82% use open coasts. 21% NEWS decline since 1997/98. (WeBS decline 47%).

Ringed Plovers are red-listed in the UK because of the decline in winter numbers and the importance of these islands of the hiaticula race. In NEWS III, the vast majority of UK birds were found in Scotland (see earlier table) but densities were highest around the coast of England.  Colour-ring studies in Norfolk showed that breeding individuals can adopt a range of migration plans – some marked birds never left the county and others had winter homes as far away as France, Scotland and Ireland. This dispersal is pretty typical of hiaticula race Ringed Plovers that nest in western Europe and southern Scandinavia. Other races travel very long distances (Well-travelled Ringed Plovers).

Curlew

42% use open coasts. 40% NEWS decline since 1997/98. (WeBS decline 26%).

Large numbers of Curlew arrive in the UK in the autumn, with a strong link between Finland and the estuaries of England and Wales. It is estimated that 20% of Europe’s Curlew winter within the British Isles and any change in numbers has significance for a species that is already listed as near-threatened by BirdLife International. The decline in numbers on open coasts has been greater than that seen in estuaries; it has been suggested that this may relate to the breeding origins of birds using different habitats.

Bar-tailed Godwit

15% use open coasts. 33% NEWS decline since 1997/98. (WeBS decline 21%).

Unlike Black-tailed Godwits, which seek out the gloopiest of mud, Bar-tailed Godwits are perfectly at home on sandy shorelines. Wintering birds are of the race lapponica; these breed in Northern Scandinavia, Finland and western Russia (more here). NEWS III tells us that there has been a larger decline in numbers in coastal areas than on estuaries, perhaps related to the relative suitability of the two habitat types.

Turnstone

68% use open coasts. 29% NEWS decline since 1997/98. (WeBS decline 29%).

Almost all of the UK’s wintering Turnstones are thought to be birds that breed in Greenland and Canada. Declines are consistent between NEWS and WeBS. A Northumberland study has shown that, as numbers have dropped, so birds have withdrawn into areas that are less disturbed by people and dogs (See Disturbed Turnstones). About three-quarters of the UK’s open-coast Turnstones are found in Scotland but they are more thinly spread here than in England.

Sanderling

69% use open coasts. 26% NEWS increase since 1997/98. (WeBS increase 8%).

As discussed in Travel advice for Sanderling, the UK is a pretty good place to spend the winter. Whether the same would have been true for previous generations of Sanderling, that were faced with much colder winters, is open to conjecture. Since 1997/98, the densities of Sanderling in Wales have increased by 712%, by 462% in Scotland and by 85% in England. How long will it be until Sanderling flocks successfully over-winter in Iceland?

Dunlin

6% use open coasts. 51% NEWS decline since 1997/98. (WeBS decline 38%).

Three races of Dunlin can be seen in the UK (as you can read in Which wader, when and why?). Wintering Dunlin are birds of the alpina race, arriving in the UK from Siberia, NW Russia, northern Finland and northern Scandinavia in the late summer. Open coasts around the UK are estimated to accommodate fewer than 20,000 Dunlin. To put this into context, there are six estuaries that each hold more than this total during the winter period.

Purple Sandpiper

Almost all on open coasts. 19% NEWS decline since 1997/98. (WeBS decline 34%).

The rocky coasts of the UK are home to Purple Sandpipers from the Arctic, with a suggestion that North Sea coasts south of Aberdeen mainly play host to birds from Spitsbergen and northern Scandinavia, with Greenland and Canadian birds more likely to be found further north and on the Atlantic coast. Coastal numbers have declined by 19%. The Highland Ringing Group has shown that the number of young Purple Sandpipers has been declining on the Moray Firth, suggesting a period of relatively poor breeding success for birds migrating from the northwest.

Redshank

22% use open coasts. 42% NEWS decline since 1997/98. (WeBS decline 21%).

Perhaps surprisingly, few Redshank cross the North Sea to spend the winter in the UK. Winter flocks are largely made up of home-grown birds and migrants from Iceland. The recent decline in Redshank numbers is thought to be a reflection of changing numbers of British and Irish breeders, although there are no monitoring schemes to provide information about Icelandic birds. Since 1997/98, the number of Redshank on open coasts has dropped by 42% but almost all of the losses have occurred in the period since 2007/08 (37% decline between 2007/08 and 2015/16). Redshank is currently amber-listed in the UK, reflecting falling breeding numbers, but ‘promotion’ to the red list cannot be far off. There is a WaderTales blog about the rapid decline in the number of Redshank breeding on salt-marshes: Redshank – the warden of the marshes.

Summary

The Non-estuarine Waterbird Survey 2015/16 revealed that there have been major declines in abundance of four species since NEWS II in 2007/08, only eight years previously: Lapwing (down 57%), Curlew (down 31%), Redshank (down 37%) and Turnstone (down 32%). Lapwing and Curlew are both red-listed in the UK. The only species to increase is Sanderling (up by 79%).

Given the magnitude of the changes revealed in NEWS III, it is unfortunate that this labour-intensive survey can only be carried out every eight to ten years. Ideally, it might be possible to survey at least a sample of sites on an annual basis. It is certainly to be hoped that funding can be found for NEWS IV within the next few years, and that volunteers will once more be prepared to count waterbirds on beautiful, if exposed, stretches of coastline.

The results of NEWS III are published in a paper in Bird Study:

Wader populations on the United Kingdom’s open coast: results of the 2015/16 Non-Estuarine Waterbird Survey (NEWS-III) and a review of population trends. Humphreys, E.M., Austin, G.E., Frost, T.M., Mellan, H.J., Boersch-Supan, P., Burton, N.H.K. and Balmer, D.E.


WaderTales blogs are written by Graham Appleton (@GrahamFAppleton) to celebrate waders and wader research. Many of the articles are based on published papers, with the aim of making shorebird science available to a broader audience.

Oystercatcher Migration: the Dad Effect

What determines whether some birds migrate and others do not? This question is fundamental to understanding how migratory systems change over time but the causes of individual migratory behaviours have proved difficult to isolate.

Verónica Méndez and colleagues are studying Icelandic Oystercatchers, some of which remain in Iceland for the winter but most of which migrate across the Atlantic to Ireland, Britain and mainland Europe. In a 2021 paper in Scientific Reports they show that a chick’s migratory behaviour seems to align with the behaviour of its father but not its mother. What can explain this pattern?

The story so far

The Icelandic Oystercatcher study system has already featured in three WaderTales blogs. The first was Migratory decisions for Icelandic Oystercatchers. This focused upon the key questions that Verónica Méndez and colleagues from the universities of Iceland, East Anglia (UK) and Aveiro (Portugal) are trying to answer.

  • Why do some Oystercatchers migrate when others don’t?
  • Is it the same birds each year?
  • Do resident or migrant birds have an advantage when it comes to choosing a territory and raising chicks?
  • Do chicks follow the same migratory patterns as their parents?

When the first blog was written, in 2015, eight colour-ringed Oystercatchers had been seen in Ireland and the UK, and five had been seen wintering in Iceland. Fast forward to the next blog in 2018 – Mission impossible? Counting Iceland’s wintering Oystercatchers – where counts showed that over 11,000 Oystercatchers spend the winter in Iceland. Using colour-ring sightings of resident and migratory birds, the research team concluded that this total is about 30% of the whole Icelandic population. The other 70% fly south across the Atlantic each autumn, with no individuals yet observed to change what they do between years.

In the third blog – Which Icelandic Oystercatchers cross the Atlantic? – some patterns were starting to emerge.

  • Females and males are equally likely to migrate.
  • Size does not matter – small and big birds are equally likely to migrate
  • There are regional patterns across Iceland, with birds breeding in the west being most likely to be resident.
  • Birds do not pair up assortatively – residents don’t pair up with other residents before the migrants return, for instance.

Family ties

In most species of waders, parents protect their chicks and take them to suitable feeding areas but they do not actively feed them. Parental care in European Oystercatcher includes foraging for food and bringing it back to the chicks. This is why it is possible for Oystercatchers to nest on the roofs of buildings (Oystercatchers: from shingle beach to roof-top), where they are out of the reach of ground predators.

Focusing on chicks

To be able to understand the relationship between migratory behaviour in adults and their chicks, you need to be able to mark and then attempt to follow all of the members of a family. Adult Oystercatchers generally keep the same mates and nest in the same areas year after year, enabling the establishment of marked population of birds in different parts of Iceland. Between 2015 and 2018, a total of 615 incubating adults were caught. By following the outcomes of nesting attempts and then monitoring the growth of chicks, the research team also managed to individually mark 377 chicks.

Three colour-ringed chicks. Where will they go?

The success of the whole project relied heavily upon winter sightings of marked birds within Iceland and in Ireland, the UK and continental Europe. Through a network of volunteer observers reporting sightings of marked individuals across the wintering range, the migratory behaviours of 227 of the 615 colour-marked adults and 50 of the 377 colour-marked chicks had been identified at the time that this paper was written. In addition, it was possible to infer the migratory behaviour of 353 marked adults using measurement of isotope ratios (δ13C and δ15N) of feathers that were grown in the winter (as described here).

The analyses in the paper by Verónica Méndez and her colleagues are based upon 42 marked chicks of parents for which the migratory behaviour of both parents is either known or can be inferred from isotopic signatures. These chicks all fledged successfully and were seen during the winter period, either in Iceland or having crossed the Atlantic. In three cases, two chicks from the same broods are known to have behaved in the same way. More data have become available since the analyses, all confirming the same patterns.

Results

It is possible to imagine a scenario in which late or slow-growing Oystercatcher chicks might be more likely to stay in Iceland than their more mature counterparts – simply by developing too late to gain enough resources to cross the Atlantic. Analysis of hatch dates and growth parameters did not suggest the existence of such a link, as described in the paper.

This young Oystercatcher was spending its first winter on the coast of western Iceland

The interesting finding of this study is the link between the behaviour of parents and chicks. Data generated by observations of colour ringed individuals (adult and chicks) and from isotopes (adults) established 21 chick/parent associations.

  • Of the sixteen chicks raised by migrant mothers, eight migrated and eight remained in Iceland.
  • Of the five chicks raised by resident mothers, three migrated and two remained in Iceland.
  • All ten of the chicks raised by migrant fathers migrated from Iceland.
  • Of the eleven chicks raised by resident fathers, one migrated and ten remained in Iceland.
  • Seven chicks that fledged from pairs with one resident and one migrant parent adopted the migratory behaviour of the father.

This is pretty compelling evidence that chick migratory behaviour is associated with paternal (and not maternal) migratory behaviour!

What does this mean?

There is no evidence of genetic control of migratory destinations and both Oystercatcher parents care for chicks, so what mechanism could produce such strong paternal but not maternal effects?

The authors suggest that the migratory behaviour of individual oystercatchers may be linked to social interactions they experience during the post-fledging period. In shorebird species, such as Oystercatchers, mothers commonly depart before the chicks fledge, or at about the same time. Fathers often provide parental care for longer and this extended period of the parental bond may underlie the link between paternal and juvenile migratory behaviour in Icelandic Oystercatchers. Despite being able to fly and feed independently, juvenile Oystercatchers in Iceland have been seen begging for food several months after fledging, suggesting that some parents (most likely fathers) may care for youngsters much longer than in other species.

This Iceland-ringed Oysterctatcher was photographed in Guernsey in January 2021. It departs at the start of February each year.

Under this extended-care system, a chick that is being look after by a resident male may well become a resident, simply by following dad. As autumn arrives, the youngster can follow his parent when he moves to the coastal mudflats where resident Icelandic Oystercatchers spend the non-breeding season. Autumn turns to winter and the chick is destined to be a resident.

Is it possible to explain a similar link for migrants? As the breeding season comes to an end, migrant fathers leave their breeding areas and head south, across the Atlantic, leaving fledged youngsters to fend for themselves. Groups of youngsters gather together in flocks which also include adults that are feeding up in preparation for migration. Although not influenced by their own fathers, chicks may follow the cues of other migratory adults, thereby creating the patterns seen in this paper.

Most of the chicks included in these analyses were early-fledged birds, simply because earlier nesting attempts tend to be more successful. The research team were unable to detect any significant effect of fledging date on migratory behaviour but they do not rule out the possibility that late-fledging individuals lack the time or resources to undertake a migratory journey, irrespective of paternal behaviour.

The broader context

Migratory behaviour typically arises in seasonal environments, allowing individuals to exploit peaks of resource abundance in distinct locations across the world. Rapid shifts in the distribution and migration phenology of many migratory species present challenges to site-based conservation strategies. There is an urgent need to understand the processes that influence individual migratory behaviour, in order to attempt to predict species’ responses to environmental change.

The findings in this paper suggest that the social interactions experienced by individuals can directly influence the development of their migratory behaviour, and that the extent and timing of parental care may be key in shaping individual access to these social interactions. You can read the full paper here:

Paternal effects in the initiation of migratory behaviour in birds Méndez V., Gill, J.A., Þórisson, B., Vignisson, S.R., Gunnarsson, T.G. & Alves J.A.


WaderTales blogs are written by Graham Appleton (@GrahamFAppleton) to celebrate waders and wader research. Many of the articles are based on published papers, with the aim of making shorebird science available to a broader audience.

Where to nest?

pic whimbrelThere is nothing more obvious than an Oystercatcher sitting on his or her nest, but a brooding Snipe can be invisible until almost trodden upon. Which strategy works better: nesting in plain view but laying cryptically camouflaged eggs or hiding yourself and your nest in a clump of grass? Which species is most likely to hatch a successful brood of chicks and in what circumstances? In a 2020 paper in IBIS, Becky Laidlaw and colleagues analysed nest site characteristics and nest locations of 469 wader nests in Iceland in order to provide some answers

The perils of ground-nesting

pic hatching whimbrel

Hatching Whimbrel eggs, with the tell-tale shell fragments that signal a nesting attempt has been successful

Almost all waders are ground-nesters, which makes them highly vulnerable to a wide range of nest predators. To reduce the risks of predation, different strategies have evolved. In some species, nests are placed out in the open, and the camouflage is provided only by mottled egg colouration that resembles the background. In other species, nests are secreted in vegetation, meaning eggs and incubating adults are concealed from predators.

In both groups of species, the risk of nests being predated might vary, depending on the surrounding habitat. For open-nesting species, for example, clutches that are laid in large patches of similar habitat may be harder for predators to locate. The same could apply to closed-nest species that hide their nests; Snipe nests may be tricky to find in extensive areas of long grass but perhaps more at risk if there are only a few suitable clumps of long grass that predators need to check out.

pic hidden Redshank

Iceland: a wader factory

tableAs discussed in previous WaderTales blogs, particularly Do Iceland’s farmers care about wader conservation? Iceland is hugely important as a European ‘wader factory’. As farmland elsewhere has become less suitable for species such as Redshank and Snipe, the global importance of the country has increased (see table alongside for most recent figures from an AEWA report)  With this in mind, it is important to understand the factors that underpin the population dynamics of Iceland’s breeding waders.

Working in South Iceland, Becky Laidlaw and her co-authors tried to find as many nests as possible during the summers of 2015 and 2016. This area is largely a mosaic of open habitats, although there are more patches of forestry than there were twenty years ago. Most of the Southern Lowlands area is farmed, on a gradient between intensive and semi-natural, and this is reflected in the distribution of breeding waders (see Farming for waders in Iceland).

pic rope

Dragging a light rope across the vegetation to flush nesting birds

For this project, nests were located by surveys from vehicles and on foot, through observation of incubating adults, systematic searching, incidental flushing of incubating adults and rope-dragging (dragging a 25 m rope, held between two fieldworkers, lightly across vegetation) to flush incubating adults.

The analysis in the resulting paper in IBIS focuses on 469 nests of three open-nesting species (Oystercatcher, Golden Plover and Whimbrel) and three species that hide their nests in tall vegetation (Redshank, Snipe and Black-tailed Godwit). The team recorded the habitat and vegetation structure around each nest (at the nest, within a 5 m x 5 m square and in a wider 50 m x 50 m square) and worked out which nests hatched successfully and which were predated. The date and time of predation were determined, where possible, with nest-cameras providing extra information for some nests. Cameras captured nest-predation events involving Arctic foxes, Arctic Skuas, Ravens and sheep.

Interestingly, 2015 and 2016 were very different wader breeding seasons. The graphic below shows the mean temperatures for the months from April through to July (encompassing the wader breeding season at this latitude) were much cooler in 2015 than in 2016, representing average monthly difference of between 1.5°C and 2.5°C. At high latitudes these figures translate into very different rates of vegetation growth.

pic pretty graph

First, find your nest

When nests were first located, their positions were marked and referenced using GPS. Eggs were floated in water to provide an estimate of laying date and thereby predict hatching date. As the chick develops within an egg, the density of the egg falls. A newly laid egg will lie on the bottom of the flotation vessel. Over the next few days the ‘blunt end’ rises until the egg is still touching the bottom but vertical. Eggs in the late-development stage float ‘point-end-down’, with the latest eggs floating at an angle to the vertical (method described by Liebezeit et al.).

pic skua-ed goldie eggs

This Golden Plover nest was probably predated by an Arctic Skua

Nests were considered successful if one or more eggs hatched, and predated nests were defined as those that were empty in advance of the predicted hatch date or those without any eggshell fragments in the nest (a sign of successful hatching). To determine the time and date of nest failures, iButton dataloggers were placed in a randomly selected subsample of nests. These loggers recorded a temperature trace every ten minutes. A sharp and permanent decline in nest temperature below incubation temperature indicates nest predation. In both study years, motion-triggered cameras were deployed on a sample of open-nesting species to determine the predator species active on these nests.

When each nest was first located, the percentage of eggs visible from directly above the nest was estimated and the habitat surrounding each nest was assessed in the field at three spatial scales: the nest cup, the 5 m x 5 m and the 50 m x 50 m area surrounding each nest. Details are in the paper.

Which nests survive through to hatching?

Over the breeding seasons of 2015 and 2016, the outcomes of 469 wader nests were assessed. 259 hatched successfully (55%), 192 were predated (41%), 13 were abandoned, 7 were trampled and 2 were mown. A nest-loss rate of 40% is fairly typical for ground-nesting waders, when compared to studies in different countries and habitats.

pic fox attack

Daily nest predation rates did not vary significantly in relation to the habitat heterogeneity or the extent to which the dominant habitat covered the area surrounding the nest, at either 5 m x 5 m or 50 m x 50 m scales. Most clutches were laid in habitats that were the same or similar to the surrounding areas. Where there were differences, the dissimilarity between the habitat at the nest cup and in the surrounding area did not influence daily nest predation rates for open- or closed-nest species. Although nest predation is high, at about 40%, incidence of predation events appears to be unpredictable – or even random.

pic snipe nest

In cold spring conditions, Icelandic Snipe are not able to hide their nests

Daily nest predation rates were significantly higher for closed nests (Redshank, Snipe and Black-tailed Godwit nests) in which a greater percentage of the clutch was visible. This suggests that the onset and rate of vegetation growth could potentially constrain the availability of suitable nesting locations for these species, and hence influence nest success, particularly among early season nests. This has been studied in Icelandic Black-tailed Godwits by José Alves and colleagues and is described in From local warming to range expansion.

For closed-nest species, the visibility of nests was significantly greater during the early part of the 2015 breeding season, when compared to 2016, due to slower grass growth in cooler conditions.  The higher predation rate of more visible nests of closed-nesting species was apparent even though nests were predated up to three weeks after egg visibility was measured. These findings suggest that early nesting attempts by concealed-nest species are unlikely to be successful in years when vegetation growth is delayed or slow. There can be major benefits of hatching early, with recruitment into breeding populations typically being lower for later-hatched chicks, so vegetation growth rates are likely to be really important to species that conceal their nests (Redshank, Snipe & Black-tailed Godwit in this study). However, given the ongoing trend for warmer springs at subarctic latitudes, the conditions in which early nests can only be poorly concealed are likely to be reducing in frequency.

In summary

pic goldie nest in habitat

Golden Plover nest set within a homogeneous habitat matrix

Perhaps surprisingly, nest predation rates were similar for open-nest and concealed-nest species and did not vary with vegetation structure in the surrounding landscape. However, nest-concealing species were about 10% more likely to have nests predated when the nests were poorly concealed, and the frequency of poorly concealed nests was higher at the start of the breeding season in colder conditions.

The paper at the heart of this blog is:

Vegetation structure influences predation rates of early nests in subarctic breeding waders. Rebecca A. Laidlaw, Tómas G. Gunnarsson, Verónica Méndez, Camilo Carneiro, Böðvar Þórisson, Adam Wentworth, Jennifer A. Gill and José A. Alves. IBIS. doi:10.1111/ibi.12827

pic sheep


GFA in Iceland

WaderTales blogs are written by Graham Appleton, to celebrate waders and wader research.  Many of the articles are based on previously published papers, with the aim of making wader science available to a broader audience.

@grahamfappleton

 

 

Which Icelandic Oystercatchers cross the Atlantic?

blog ringed birdMost Icelandic Oystercatchers leave Iceland in the autumn, crossing the Atlantic and arriving in Ireland, the UK and mainland Europe. Despite much shorter day-length and colder conditions, 30% spend the winter in Iceland, as discussed in this blog (Mission Impossible).

A 2020 paper from Verónica Méndez and colleagues asks whether birds that stay in Iceland or cross the Atlantic differ in sex, body-size or breeding location (within Iceland) and whether birds behave differently in different years. Interestingly, they were also able to test whether there is assortative mating – do Oystercatchers that stay in Iceland pair with other stay-at-home birds?

Iceland’s Oystercatchers

Iceland lies at the northern edge of the breeding range of Eurasian Oystercatchers. The country supports an unusually high proportion of wintering Oystercatchers, given its latitude and winter temperatures (Þórisson et al. 2018), and this may be influenced by the trans-oceanic flight of at least 700 km that migratory individuals must undertake to reach the European wintering sites. Individuals that migrate or stay within Iceland could differ in body size, for example if size influences the capacity to survive adverse winter conditions. Females tend to be slightly larger, and thus any sex differences in migratory behaviour could potentially reflect differences in body size.

It would be easy to imagine a scenario in which Oystercatcher pairs try to breed as early as possible, as this could increase the number of potential nesting attempts, as discussed in Time to nest again, based on Morrison et al. 2019. Does this mean that stay-at-home birds pair off at the start of the season, before migrants arrive? Given that most birds will choose the same mate in successive years, what happens in mixed pairs if a resident is waiting around for a delayed migrant? Is divorce likely to occur, as discussed in the importance of synchrony for Black-tailed Godwits, and could this mean that mixed pairs are rare?

Colour-marks and isotopes

blog map of sightingsA huge amount of the evidence that was used to answer the questions posed by Verónica and her colleagues was provided by volunteer birdwatchers, who reported colour-ringed Oystercatchers in their wintering areas, in the period through to April 2018. There’s an impressive set of dots on the map alongside, from the north of Scotland through to Spain, and the number of sightings continues to rise. It’s perhaps unsurprising, given the direction of travel from Iceland, that there is a strong westerly bias to the distribution across the British Isles.

The sample size from colour-ring observations was not big enough to answer all of the questions posed above, especially relating to whether pairs mate assortatively. To provide one data-point, it’s necessary to know the winter locations of both members of the pair. Might feather isotope ratios provide some help?

Oystercatchers that winter in Iceland use a restricted number of coastal sites (as inland sites are frozen during winter) and forage on marine prey. Elsewhere in Europe, a much wider range of marine and freshwater resources is available, with birds readily moving between the shoreline and fields, golf-courses, football pitches and road-side verges. Previous studies have shown that terrestrial diets produce different carbon and nitrogen isotope ratios, based on salinity and trophic level of prey items.  Are differences in habitat use and diet of Oystercatchers reflected in carbon (δ13C) and nitrogen (δ15N) isotope ratios of feathers grown during late winter?

blog isotope chest

Oystercatchers moult their chest feathers in late winter

The research team hoped that isotopic signatures from resighted colour-marked migrants and residents would be sufficiently different to be able to predict the probable wintering areas (Europe or Iceland) of marked birds not seen away from their breeding sites. If so, this would greatly increase the sample size, by enabling the combination of data from observations of colour-marked individuals with information on birds that could be assigned as Icelandic or European winterers using the isotopic composition of their feathers. They predicted that it would then be possible to:

  • Identify migratory strategies of individual Oystercatchers and explore whether the likelihood of migrating or staying in Iceland is related to gender, body size or breeding location.
  • Assess how consistent these individual strategies are between years.
  • Quantify spatial variation in the distribution of migrants and residents across the Icelandic breeding range.
  • Determine whether Oystercatchers mate assortatively in relation to migratory behaviour.

The work covered in this paper was conducted between 2013 and 2017. Full details of the study areas and methods are available in the paper – link below.

blog snow

Early nesting is not always a good idea – still incubating after sudden snow-fall

Migrant or resident?

blog co sligo

An Icelandic Oysterctaher spending the winter in Co. Sligo in Ireland

Of the 537 colour-ringed adults in the study, 58 were seen away from Iceland and 55 were shown to be resident in Iceland. Oystercatchers undertake a partial moult at the end of the winter period, when they grow new feathers on the neck and chest. The isotopic signature of a tiny piece of one of these feathers, taken from each adult at the time of ringing or recapture, was determined. The values of δ13C, which relates to habitat salinity, and δ15N, which relates to trophic level of diet, varied between residents and migrants but there was an overlap (details in paper).  There was enough of a difference, however, for it to be possible to allocate two-thirds of ringed birds that had not been seen in the winter period to the resident and migratory categories, with sufficient certainty, thereby increasing the sample size for other tests.

Consistency of migratory tendency

The 18 individuals that were observed in more than one winter were all consistent in migratory behaviour (10 residents and 8 migrants) and each was seen in the same specific location (Iceland or western Europe) in both winters. Where feather samples were taken in more than one year, there was no evidence of any bird changing its habitat or diet.

Factors influencing individual migratory programmes

Females and males were equally likely to migrate and there was no evidence that bigger (or smaller) birds were more likely to leave Iceland. Most Oystercatchers that winter in Iceland are in flocks in the west of the country, where the coast is warmed by the Gulf Stream. Unsurprisingly, westerly breeders were more likely to be resident than those in the south or northeast of Iceland (see figure below).

blog pie charts

Assortative mating

Vero and her colleagues were able to assign the migratory strategy to both members of the pair for 162 pairs (either by resightings or using predictions from isotopic signatures). Among these, 75 pairs (46%) were both migrants, 32 pairs (20%) were both residents and 55 pairs (34%) were mixed. The frequency of full-migrant, full-resident or mixed pairs varied significantly among regions, which was to be expected, given the differences in the likelihood of migrating from different parts of Iceland. There was no evidence of assortative mating; the likelihood of a particular individual pairing up with a migrant was as expected from the proportion of migrants in the area; it was not influenced by whether the particular individual was itself a migrant (see figure above).

To migrate or remain in Iceland

The consistency of adult migratory behaviour suggests that migratory strategy is determined in early life, and the regional variation in the frequency of migrants and residents may thus reflect variation in the conditions encountered by individuals during this life stage. As noted above, the frequency of residency is greatest amongst Oystercatchers breeding in the west of Iceland, which are the areas closest to the main wintering locations. Juveniles from the northwest and west are more likely to encounter these flocks of adult and sub-adult birds when moving south, than juveniles from the south, north-east and east, which are more likely to encounter migrating adults.

blog gen chThe regional variation in migratory strategy could arise through the influence of social cues, with juveniles adopting the behaviour of Oystercatchers they encounter and then recruiting back into their natal locations (more about this in Generational Change, focusing on Black-tailed Godwits). Birdwatchers across Europe will hopefully help to test this theory, by tracking colour-ringed juveniles during the early years of life. This is all part of a quest to identify the conditions that influence migratory behaviour and to understand the consequences, in terms of survival rates and productivity, of adopting different migratory traits.

Paper

Please click on the title below to access the paper:

Individual variation in migratory behavior in a sub-arctic partial migrant shorebird by Méndez V., Alves J.A., Þórisson, B., Marca, A., Gunnarsson, T.G., Gill, J.A.  Published in Behavioral Ecology (2020).  doi.org/10.1093/beheco/araa010 

blog footer


GFA in Iceland

WaderTales blogs are written by Graham Appleton, to celebrate waders and wader research.  Many of the articles are based on previously published papers, with the aim of making wader science available to a broader audience.

@grahamfappleton

 

Fennoscandian wader factory

 

blog tem st

Nesting Temminck’s Stint – the smallest of the 22 wader species for which trends are reported

At the end of the summer, vast numbers of waders leave Norway, Sweden and Finland, heading southwest, south and south-east for the winter. In a 2019 paper by Lindström et al, we learn what is happening to these populations of Fennoscandian breeding species, as diverse as Temminck’s Stint and Curlew. The news for the period 2006 through to 2018 is basically pretty good – most populations have been stable and there are even some that have increased – but there are worrying signs for Broad-billed Sandpiper, Red-necked Phalarope and Whimbrel.

Breeding waders of Fennoscandia

blog mapAs a volunteer taking part in the Breeding Bird Survey (BTO/JNCC/RSPB) in the UK, I feel that I do my bit to monitor what is happening to local bird population – providing counts that build into national trends. The work involved in delivering indices for breeding waders across the area of Fennoscandia shown in the map is in a different league. Here, counters visit habitats as diverse as forests, wetlands, mires and tundra, within the boreal and arctic areas of Norway, Sweden and Finland. Some survey sites are so remote that access requires the use of helicopters.

Fennoscandia provides important breeding areas for a large set of wader species, and models suggest that these habitats may be particularly vulnerable to climate change, especially increasing summer temperatures. The 2006-18 analysis in Wader Study, the journal of the International Wader Study Group, presents population trends for 22 wader species. The trends are based on 1,505 unique routes (6–8 km long), distributed over an area that’s about four times that of the United Kingdom. 

blog surveyor

The surveys took place across the whole of Norway and Finland, and in the northern two thirds of Sweden, between 58°N and 71°N, which largely coincides with the boreal, montane and arctic regions of Fennoscandia. The systematic distribution of these routes ensures that the main habitats in these countries are sampled in proportion to the area they cover. The paper describes the methodologies used in the three countries and the way that data were combined, especially factors used to translate sightings of individuals into ‘pair-equivalents’.

Overview of results

blog mountainLooking at the results from across Norway, Sweden & Finland:

  • In terms of pure numbers, Golden Plover was the most commonly encountered wader species, followed by Wood Sandpiper, Snipe, Greenshank and Green Sandpiper.
  • The five most widespread species, seen on the highest number of routes, were Snipe, Green Sandpiper, Greenshank, Wood Sandpiper and Common Sandpiper.
  • Wader species richness and the total number of wader pairs were both higher with increasing latitude; the median number of wader pairs per 10 km increased from just below 3 at latitudes 58–60°N, to just above 26 at latitudes 69–71°N.
  • Using a multi-species indicator, the research team found no general change in wader numbers over the period 2006-18.
  • The trends were significantly negative for three species: Red-necked Phalarope (-7.9% per year), Broad-billed Sandpiper (-5.4% per year) and Whimbrel (-1.3% per year).
  • The trends were significantly positive for three species: Oystercatcher (+4.9% per year), Dunlin (+4.2% per year) and Wood Sandpiper (+0.8% per year).
  • There was no significant trend for another 16 species for which encounters were deemed to be frequent enough for analysis.
  • Population trends of long-distance migrants tended to be more negative than those of medium-distance migrants. This is discussed in detail in the paper.

blog wood sp habitat

Focusing on some key species

The Lindström et al paper is a tremendously rich source of information and references. Here are some species-specific highlights.

Oystercatcher. In the context of a species that is declining across NW Europe, the fact that there is a significant increase in Oystercatchers across Fennoscandia may be surprising. However, the authors note that there was a jump in numbers between 2006 and 2007 with little change since then.

blog l graphLapwing. The trends within the three Fennoscandian countries are very different. In Norway, there has been a dramatic decline (-15.2% per year during 2006–2018) and the Lapwing is now nearly extinct in many areas. The trend in Sweden is also significantly negative (-5.8% per year). In Finland, however, where the species is more widespread and numerous, there has been a strong increase (+5.9% per year) during the same period. See figure alongside.

Golden Plover. No significant change overall. There are some country-specific differences in trends, with a moderate decline in Norway being countered by a moderate increase in Sweden. 

Snipe. The overall trend of this species for each country indicates an initial decline followed by an increase. A similar pattern has been noted in the UK’s Breeding Bird Survey over the same period. 

blog whimbrel

Nesting Whimbrel

Woodcock. The trend for 2006–2018 is basically stable and similar in all three countries.

Curlew. There is no significant trend, overall, but populations in Norway and Sweden have declined at the same time that numbers in Finland have increased.

Whimbrel. Fennoscandian trend indicates a decline of 1.3 % per year. Whimbrel is doing poorly in Norway and Sweden but better in Finland. 

Wood Sandpiper. This widespread species has increased slowly (0.8% per year), a trend that is largely driven by Norwegian and Swedish populations.

blog wood sp

Wood Sandpiper was the second most commonly encountered wader

Redshank. The fact that no change was discernible, suggests that boreal and arctic populations are faring much better than the breeding populations further south in Europe. For example, see Redshank – warden of the marsh.

blog RK

Redshank – more obvious than most breeding waders encountered!

Spotted Redshank. The estimated annual decline for Spotted Redshank is 2.8% per year but the species is too thinly spread for this to provide significant evidence of a decline. This rate is very similar to the recent drop in the Wetland Bird Survey index in the UK. See Fewer Spotted Redshanks.

Broad-billed Sandpiper. This species has the second most negative trend among the 22 species analysed (-5.6% per year). The bulk of information comes from Finland where the trend is even more negative (-7.5% per year). Birds head southeast in the autumn to countries bordering the Indian Ocean – areas for which winter trend data are not available. The species is still considered to be of ‘least concern’ but perhaps this designation may need to be revisited?

Dunlin. Breeding birds in the survey area are largely of the alpina race. The overall trend is significantly positive (+4.1% per year), which is in sharp contrast to the strong declines of the schinzii subspecies that breeds around the Baltic Sea, western Finland and further south and west in Europe.

blog rnpRuff. There were major declines in the period immediately prior to this review (Lindström et al. 2015) but changes reported here are lower (-2.3% per year) and the decline is not statistically significant.

Red-necked Phalarope. The authors write, “This species has the most negative trend of all the 22 species [-7.9% per year], with most data coming from Sweden. We do not know the cause of this decline but, given that this species shares its south-eastern migration route with Broad-billed Sandpiper, whose population exhibits the second largest decline, the relevant problems might largely apply somewhere along the migration routes”.

Link to Britain & Ireland

As shown in Which wader when and why? there are strong migratory connections between Fennoscandia and the British Isles. Some waders, such as Green, Common and Wood Sandpipers, pass through on their way south in the autumn, whilst many more fly here for the winter, to take advantage of the warmer maritime climate.

Three wader species with particularly strong links between Fennoscandia and Britain & Ireland are still shot and eaten in these islands. Each autumn, large numbers of Woodcock, Golden Plover and Snipe cross the North Sea. It is difficult to ascertain figures for the number that are shot but there is agreement that the vast majority are winter visitors, as opposed to native birds. The results presented in the paper suggest that there have been no discernible changes in the Fennoscandian populations of these three game species in the period 2006-18. Two earlier WaderTales blogs focus on Woodcock and Snipe in Britain & Ireland:

blog goldie

There has been no significant change in Golden Plover numbers across Fennoscandia

Two WaderTales blogs about wintering waders in Great Britain and the island of Ireland were published in 2019, based on reviews in British Birds and Irish Birds. These were Do population estimates matter? and Ireland’s wintering waders. The six big losers, in terms of wintering numbers in these islands, were Knot, Oystercatcher, Redshank, Curlew, Grey Plover and Dunlin. Knot arrive from Greenland and Canada, with Grey Plover flying from Russia, but it is interesting to think about this Fennoscandian breeding analysis in the context of winter losses of the other four species.

  • Wintering numbers of Oystercatchers have dropped recently in Britain and in Ireland. The population is made up of migrants from Iceland (more about this here), very large numbers from Norway, birds that stay within the British Isles and smaller numbers from other European and Scandinavian countries. Given there is no discernible decline in Fennoscandia, it seems likely that much of the decline can be attributed to a major fall in Scottish breeding numbers (more about this here).
  • Most Redshank wintering in Britain & Ireland are of local or Icelandic origin. Fennoscandian numbers seem to be stable; if there were any changes, these would probably not be apparent in wintering numbers within the British Isles.
  • The Eurasian Curlew has been classified as ‘near-threatened’ and the species is known to be declining in many areas (see this blog about serious problems in Ireland). Ringing shows a particularly strong link between Finland, where breeding numbers seem to be increasing, and Britain & Ireland. The decline in British and Irish winter numbers is probably being driven by lower breeding numbers within the British Isles and in countries such as Sweden, Norway and Poland.
  • There is a theory that new generations of alpina Dunlin may be more likely to winter within Europe’s mainland estuaries, instead of continuing their westward migration across the North Sea. This might explain the apparent anomaly between the 4.1% per annum rise in Fennoscandian numbers and recent winter declines of 3% in Britain and over 20% in Ireland.

Going forwards

blog helicopter

Some of the survey areas were in particularly remote areas

Many of the study squares that were covered during these surveys are a long way from the main centres of human population in Norway, Sweden and Finland. The governments of the three countries are to be congratulated for supporting this important monitoring, which relied on the commitment of hundreds of volunteers. It is to be hoped that these surveys will continue and that further species-focused work will be able to explain some of the differences across Fennoscandia, particularly between eastern and western areas. The rapid declines in numbers of two species that migrate southeast each autumn (Broad-billed Sandpiper and Red-necked Phalarope) highlights the need for better information about what is happening on the flyway linking Fennoscandia with the Arabian Sea and coastal countries of the Indian Ocean.

Paper

Population trends of waders on their boreal and arctic breeding grounds in northern Europe: Åke Lindström, Martin Green, Magne Husby, John Atle Kålås, Aleksi Lehikoinen & Martin Stjernman. Wader Study 26(3)

Click on the title of paper to access it on the International Wader Study Group website. Paper is only available to members of IWSG. If you have read the whole of this blog you’ll probably want to join!

blog barwit

Nesting Bar-tailed Godwit in smart summer plumage


GFA in Iceland

Graham (@grahamfappleton) has studied waders for over 40 years and is currently involved in wader research in the UK and in Iceland.  He was Director of Communications at The British Trust for Ornithology until 2013 and is now a freelance writer and broadcaster.

 

 

Sixty years of Wash waders

wwrg tt balance

Weighing a Turnstone

The Wash Wader Ringing Group (WWRG) started with a bang on 18 August 1959, when the team made a catch of 1,132 birds in a Wildfowl Trust rocket-net at Terrington, in Norfolk. Over the years, cannon have replaced rockets, catches have become generally smaller and the scientific priorities have been refined, but the Group continues to focus upon discovering more about the waders that use the Wash. This blog attempts to summarises what has been learnt about the waders that rely upon the Wash, the vast muddy estuary that lies between Lincolnshire and Norfolk, on the east coast of England.

Wee quiz: What’s the best match between these Wash waders and the countries that they are quite likely to have come from? Answers at the end of the blog:

  • Species: Bar-tailed Godwit, Black-tailed Godwit, Curlew, Oystercatcher, Sanderling & Turnstone
  • Countries: Canada, Finland, Greenland, Iceland, Norway & Russia

Sixty years ago, the first goal was to understand where the vast flocks of waders that visit the Wash came from – a task that would provide great insights into the way that the whole East Atlantic Flyway works. In this time, over 300,000 birds have been caught and ringed on the Wash, as you can see in the table below. Equally importantly, hundreds of bird-ringers from across the UK and scores of visitors from around the world have joined WWRG teams, in order to learn more about the study of shorebirds. Further international collaboration has been fostered through overseas visits by WWRG members and emigration of some key personnel. The impact of the Group is truly global, as you can read in the WWRG report for 2014/2015.

wwrg table

A total of 307,226 birds is impressive, especially when some of the species totals are compared to the national totals of the BTO Ringing Scheme for the whole of Britain & Ireland since 1909. WWRG is responsible for over 40% of the Grey Plover, Knot, Sanderling and Bar-tailed Godwit, with Grey Plover topping the list at nearly 60%. These are terrific achievements for a group of volunteers. I don’t have the figures but I reckon that Nigel Clark has been responsible for the largest number of catches.

wwrg box

Firing box connected to 4 cannon-nets

In the early days, rocket nets were borrowed from the Wildfowl Trust for an annual summer week of catches, but the development of cannon-nets gave opportunities for all-year ringing. The intensity of the Group’s activities grew in the 1970s, when there was a threat to build a freshwater reservoir on the mudflats. For a couple of years, Clive Minton (founder and leader) persuaded us to visit fortnightly, so that we could get better data on weight-gain and turn-over, using a mixture of cannon-netting and mist-netting. Everything we knew was published by the Group as The Wash Feasibility Study in 1975. These days, the Group gets together about ten times a year for catching and colour-ring-reading sessions.

wwrg oldies

By catching and ringing large numbers of the key species that visit the Wash, the Group was able to generate maps showing what are now well-known patterns of migration (see Which wader, when and why?). Early on in the Group’s history, there was a focus on nine species, with Black-tailed Godwit added as a tenth when numbers increased. Each of these species has its own section below. The maps were prepared for the Wash Wader Ringing Group 2016/2017 Report by Ryan Burrell, using data stored within the BTO archives. Blue dots represent WWRG-ringed birds that have been found abroad. Red triangles represent foreign-ringed birds caught on the Wash. The base maps used are by courtesy of Natural Earth (www.naturalearthdata.com).

Oystercatcher

wwrg map OCThe map alongside clearly demonstrates the strong link between the Wash and Norway. Other interesting things that have been discovered about Oystercatchers:

  • They live a long time. An Oystercatcher that we caught at Friskney on 30 July 1976 broke the longevity record for a BTO-ringed wader when it was shot in France on 4 April 2017 (41 years 1 month and 5 days). It was ringed as an adult so we don’t know the exact age – but it must have been at least 43 years old. There’s a WaderTales blog with a list of longevity records for BTO-ringed waders.
  • When life gets tough, Oystercatchers fail to complete their autumn moult, retaining some of their outer primaries for an extra year. The ability to complete moult and annual survival rates are both affected by cockle and mussel supplies on the Wash. There’s more about this in two papers in Biological Conservation and the Journal of Applied Ecology.

Grey Plover

wwrg GV GVIn the early days of the WWRG, Grey Plovers occurred in much smaller numbers than they do now. Writing in an article about the first 40 years of the Group, Clive Minton told the story of the first catch of 100, made in 1963, that was celebrated with three bottles of champagne provided by the late Hugh Boyd, delivering on an incentive that he had promised.

  • Over half of the Grey Plover that have been ringed in Britain & Ireland since 1909 have been ringed by WWRG since 1959 (58.9%)
  • All of the Grey Plover using the Wash breed in Siberia. Some birds spend the winter on the Wash but there are autumn moulting flocks of birds that will go on to winter in other parts of Britain & Ireland, and spring and autumn passage of birds that travel as far south as West Africa.
  • Grey Plover are late to leave the Wash, with the last departures not occurring until the start of June. Unsurprisingly, they are some of the last waders to return at the end of summer, which puts pressure on birds to finish moult before the short, cold days of winter. Some adults fail to complete primary moult, especially if food supplies are low. There is more about Grey Plover moult in this WaderTales blog.

wwrg map GV KN

Knot

wash knot

First-winter Knot (subterminal bands on wing coverts and, as yet, unmoulted juvenile fethers on upper-parts)

Knot (or Red Knot) are truly international waders, as is shown in this map of movements of islandica  (and a few canutus) birds  to and from the Wash. Several WWRG members have been heavily involved in efforts to understand the decline in numbers of the rufa subspecies in Delaware Bay (on the North American eastern seaboard) and Clive Minton has been at the heart of efforts to explain the sudden drop in survival of piersmai and rogersi adults that winter in Australia and migrate to Arctic Russia via the Yellow Sea (see Wader declines in the shrinking Yellow Sea).

  • We are still learning about Knot migration. The cluster of reports of WWRG-ringed birds in Northern Norway looks odd on this map projection but it turns out that this is a well-used stopping-off point for islandica Knot heading for northern Greenland and NE Canada. This route was first confirmed in 1985, when a joint Durham University and Tromsø University expedition caught 18 Wash-ringed birds in a total catch of 1703 birds.
  • The dot in Siberia looks odd but isn’t. This will be a bird of the canutus race, small numbers of which pause on the Wash in autumn and spring, on their way between the Russian Arctic and west Africa.
  • wwrg net set

    Setting cannon-nets

    Many birdwatchers visit the Wash in autumn and winter to see the swirling Knot flocks at Snettisham and Holme. If high tide is at first light, Knot and other waders sometimes roost on Heacham Beach, giving the occasional opportunity to make a significant catch. The most recent of these, on 11 February in 2012, included 2757 Knot, 77 of which were already wearing rings.

  • Knot numbers on the Wash are highest in autumn. After moulting, many birds fly west. Colour-flagging by WWRG is designed better to understand these movements.
  • The most recent analysis of wader populations in Great Britain showed that there was a drop of nearly 20% in wintering Knot numbers (from 320k to 260k) in less than a decade (see Do population estimates matter?). Regular catches on the Wash will help produce estimates of annual survival rates and age ratios of the islandica subspecies.

Sanderling

wwrg sanderlingThe biggest catches of Sanderling are generally in the summer, when the Wash is a meeting point for birds from Greenland and Siberia. July can sometimes see catches of 200 or more birds. Traditionally, a Sanderling catch was the curtain-raiser at the start of Wash Week, an opportunity for the whole team to make one catch before splitting into ‘Terrington’ and ‘Lincolnshire’ teams for the rest of the main summer trip.

  • Wintering Sanderling on the Wash are thought to be exclusively of the race that heads northwest in the spring, to Greenland via Iceland.
  • Late summer and spring see the addition of birds passing through on their way from/to Siberia and extra birds from Greenlandic breeding areas.
  • I well remember the first time we caught a Sanderling (on 26 July 1975) wearing an Italian ring (caught in Italy 9 May 1975). Thanks to Jeroen Reneerkens (whose work is covered in this blog) I now understand that this is probably a bird that migrates from Namibia to Greenland in spring, via the Mediterranean. It will have been on its way back to Namibia when caught in July.

wwrg map SS DN

Dunlin

wash dunlin

Sam Franks, looking for the buffy tips on inner coverts, which distinguish first-year birds from adults

Nearly half of the waders caught by WWRG have been Dunlin – a total of 140,168 up until the end of 2018. There were really big flocks of Dunlin in the 1970s but numbers have dropped over the years, with peak counts now half what they were, according to WeBS data.

  • We caught over 3,500 Dunlin in one week in 1976 but the annual total has exceeded 1,000 in only four of the last ten years. Partly, this reflects a change in behaviour in the summertime, with fewer waders roosting on fields and hence less catchable.
  • Three races of Dunlin visit the UK. Our winter birds are alpina, from Siberia, NW Russia and northern Scandinavia. A lot of July birds are schinzii, breeding in the UK and as far north as Greenland, and we occasionally try to convince ourselves that we have caught an arctica from northern Greenland.
  • Data collected for the WeBS survey suggest that national winter totals have dropped by over 40% in 25 years. This could perhaps partly be explained by a redistribution of alpina, with new generations of young birds settling in wintering areas on the other side of the North Sea. Warmer winters may well make this a more practical proposition than in the 1970s. There’s more about this in this paper.

Black-tailed Godwit

wash blackwit

Newly ringed Black-tailed Godwit, caught in a mist-net at night.

Black-tailed Godwits became a priority species in 1995, when Jennifer Gill (University of East Anglia) started a project to study the movements of individuals, using colour-rings. Nearly 25 years later, the WWRG-ringed Black-tailed Godwits have contributed data to numerous papers, largely focusing upon migration.

  • The Wash is a hugely important area for moulting islandica Black-tailed Godwits. Some birds stay in East Anglia for the winter but others move south and west within the UK, west to Ireland and south to France, Portugal and Spain.
  • There are several blogs about Black-tailed Godwits in this WaderTales contents list.

Bar-tailed Godwit

One of the key things that was learned from the sudden decline in annual survival rates in a range of species that use the Yellow Sea (as mentioned above) is a need for regular monitoring of marked birds. The WWRG’s Scientific Committee set up colour-flagging projects for Bar-tailed Godwit, Curlew and Grey Plover, in order to increase the reliability of estimates of annual survival for three species that the Group does not catch in sufficient numbers to generate good retrap histories. Birdwatchers can help by reporting colour-marked birds here.

wwrg barwit map etc

  • In Bar-tailed Godwits: Migration & Survival there is a comparison of the data generated by a catch of 505 Bar-tailed Godwits in 1976 with the information that has been generated recently, using colour-flags.
  • Bar-tailed Godwits are long-lived birds. A WWRG bird holds the current record for a BTO-ringed Bar-tailed Godwit: 33 years and 11 months between ringing in 1978 and recapture in 2008. BTO longevity records are discussed in this WaderTales blog.
  • Colour-ring reading is now a significant element of Group activities, as described by Rob Pell in the WWRG Report for 2016/2017.

Curlew

Back in the 1970s, Curlew were still hunted on the Wash (paté made from autumn-shot birds was reported to be very tasty). Shooting stopped in Great Britain in 1981, when the maximum winter count on the Wash had dropped to about 3,000 birds, and by 2003/04 the maximum winter count was 15,336. Since then, numbers have declined, in line with national and international trends.

wwrg curlew map etc

  • A large number of Curlew on the Wash in winter are from Finland and surrounding countries. Surprisingly few are of UK origin.
  • Birds wearing WWRG leg-flags have been observed breeding in the Brecks (Norfolk/Suffolk).
  • The Curlew is internationally designated as ‘Near Threatened’. Is this really true when we can still see a field with 1000 roosting Curlew in Norfolk? Answers here.

Redshank

wash redshThe latest population estimates suggest that Great Britain has lost 26,000 wintering Redshank in less than a decade, representing a drop of 20%. Perhaps WWRG data can be used to help to explain these declines? Here are some of the things we know:

  • The Redshank on The Wash in the winter are mainly a mixture of birds from around the Wash, across the UK and from Iceland.
  • In cold winters, Redshank wintering on the Wash die in large numbers. After a period of severe weather in 1991, nearly 3,000 wader corpses were collected from along the tide-line, about 50% of which were Redshank. The winter WeBS counts for Redshank dropped by 50% after this mortality event but have recovered somewhat since then.
  • An analysis of nearly 1,000 dead Redshank showed that about two-thirds were of Icelandic origin. There was a tendency for smaller birds to be more susceptible to cold weather mortality than larger birds of the same species (More information in this paper by Jacquie Clark)

wwrg map RK TT

Turnstone

wash ttWinter Turnstone are birds that will head for Greenland and NE Canada in the spring but recoveries of birds in Finland and other Scandinavian countries indicate a passage of continental birds. African recoveries of WWRG-ringed birds probably include birds from Canada/Greenland and Finland/Scandinavia.

  • Turnstone wearing US Fish & Wildlife Service rings are occasionally caught on the Wash. Some of these rings were put on by Guy Morrison and his colleagues in Alert, Ellesmere Island, Canada. Guy was an early member of WWRG. It’s a small world!
  • The first Wash Turnstone were colour-ringed in 1999, as part of a study to understand why birds were feeding on the docks at Sutton Bridge. There is a WaderTales blog about the resulting paper by Jen Smart and Jennifer Gill. Colour-ringing continues, to measure annual survival rates.
  • Turnstone have a reputation for eating almost anything (including dog excrement and a human corpse) so do not be surprised if you see a colour-ringed bird scavenging for chips on the Hunstanton sea-front.

A few more highlights

Ringed Plover: this is not one of the ten key study species but 1,432 have been ringed between 1959 and 2018. Some birds are local breeders that hardly move anywhere but other birds link the Wash with Greenland, northern Norway, Morocco and Senegal.

wwrg GKGreenshank: The Group supports a colour-ringing project that was initiated by Pete Potts, in Hampshire. More information here.

Spotted Redshank: During the period 1959 to 2018, WWRG ringed a total of 85 Spotted Redshank, representing over 20% of the total ringed in Britain and Ireland since 1909. Amazingly, sixty of these birds were ringed on the same day – 27 July 1975. There is a blog about this catch and the recent decline in the number of Spotted Redshank visiting the UK. Fewer Spotted Redshanks.

Ruff: Until its closure, WWRG members spent many a smelly night at Wisbech Sewage Farm. This was a great place to catch Ruff, Curlew Sandpipers, Green Sandpipers etc. in mist-nets. Group members wrote a paper about Ruff moult and migration.

Rares: Occasionally there are surprises! WWRG has caught one each of Stone Curlew, Pectoral Sandpiper, Broad-billed Sandpiper and Terek Sandpiper. The last bird features in this WWRG blog.

What do we know now?

Migration studies have revealed the importance of the Wash to half a million or more waders each year – birds that spend the whole winter, others that refuel in the spring and vast numbers that rely on the food supplies in the mud to provide the energy for the post-breeding moult. There’s a selection of papers that have included WWRG data here, on the Group’s web-site.

wwrg cr TTThe Group still aims to maintain its general ringing programme, so that a representative sample of the key species carry rings. Colour-ringing projects aim to provide survival estimates for Curlew, Bar-tailed Godwit, Grey Plover and Turnstone, with Greenshank and Black-tailed Godwit colour-rings contributing to migration studies. Birdwatchers who visit the Wash can help by reporting colour-marked birds here, on the WWRG web-site.

WWRG data have been used to help inform decisions about the future of the Wash but the threats keep coming. Studies of migration and seasonal turn-over in numbers contributed hugely to decisions to provide national and international protection to the area and to fend off the 1970s plan to build a freshwater reservoir on the rich mudflats. The information that has been generated by many generations of volunteers over a period of sixty years has been used to manage the level of shellfish exploitation, to inform decisions about wind turbine locations and to manage activities that can cause disturbance.

The Wash Wader Ringing Group is very keen for its data to be used – and not just for impact assessment studies. Click here to learn more.

Diamond Jubilee

PLI

Phil Ireland releasing a Curlew

Over one thousand people are estimated to have contributed to sixty years of the Wash Wader Ringing Group’s activities. We have lived in barns, rolled cars, dug tens of thousands of holes, carried nets for miles, made important catches, had depressing failures, got frostbite, been threatened by surge tides and made friends for life.

In the whole of this period, there have been only two leaders of the Group – Clive Minton* (1959-1981) and Phil Ireland (1981-present). Bird ringers, wader biologists and millions of waders owe them both a huge debt of gratitude.

You can read more about the history of WWRG on the Group’s website:

*Clive Minton died in a car crash a few months after this blog was written. Friends and colleagues have shared some wonderful memories on the IWSG website.

wwrg sunset

Photo at the top of this blog is by Cathy Ryden. Many thanks to her and to other photographers.

Wee quiz:

  • Bar-tailed Godwit – Russia
  • Black-tailed Godwit – Iceland
  • Curlew – Finland
  • Oystercatcher – Norway
  • Sanderling – Greenland
  • Turnstone – Canada

GFA in Iceland

Graham (@grahamfappleton) has studied waders for over 40 years and is currently involved in wader research in the UK and in Iceland.  He was Director of Communications at The British Trust for Ornithology until 2013 and is now a freelance writer and broadcaster.

Advertisements

Occasionally, some of your visitors may see an advertisement here,
as well as a Privacy & Cookies banner at the bottom of the page.
You can hide ads completely by upgrading to one of our paid plans.

UPGRADE NOW DISMISS MESSAGE

Ireland’s wintering waders

blog KN OC

There’s still space for a few Knot

The island of Ireland is a great refuge for wintering waders, washed as it is by the warm waters of the Gulf Stream. It’s just a quick hop across the Atlantic from Iceland for Black-tailed Godwits, Golden Plovers, Redshanks and Oystercatchers. For birds travelling from Siberia, such as Dunlin and Grey Plovers, it’s a longer journey but one that’s well worth making.

If Ireland is such a great destination for shorebirds, why do the latest population estimates reveal a decline of nearly 20% in wader numbers in just five years?

This blog summarises the wader information, published in Estimates of waterbird numbers wintering in Ireland, 2011/12 – 2015/16 in Irish Birds. The totals in the report are split into counts for the Republic of Ireland and Northern Ireland but, given that waders don’t recognise borders, most of the comments in this blog relate to the whole of Ireland. The results for 2011-16 have been compared to the equivalent figures for 2006-11 and set in the context of the totals of wintering waders throughout the East Atlantic flyway, as combined by Wetlands International. The Irish data were collected by the amazing volunteers who make monthly, winter counts for I-WeBS (BirdWatch Ireland & National Parks & Wildlife Service) and WeBS (BTO/RSPB/JNCC in Northern Ireland).

blog paper

Headline figures

Fifteen species are considered in this report. The most numerous are Lapwing and Golden Plover, which account for an estimate over 170,000 individuals between them, whilst the smallest contributions are made by Purple Sandpiper (662) and Greenshank (1317). In total, the average estimated number of waders in the winters during the period 2011-16 is 429,170 birds but it should be noted that this total excludes two widespread and common species – Woodcock and Snipe – as well as the enigmatic Jack Snipe. To update previous estimates for these three species, which were last made using distribution and abundance data collected during Bird Atlas 2007-11 fieldwork, it would be necessary to run a special inland survey. There is also some question about Lapwing and Golden Plover numbers, simply because so many of these birds are found in areas that are not covered by monthly waterbird counts.

Biggest changes

blog SA

The Irish Sanderling population has increased by 13.2% in five years

The combined average winter maximum count of the 15 wader species examined in the report declined by 102,310 birds (19%) in the five-year period between 2006-11 and 2011-16. This is extremely worrying. If Lapwing and Golden Plover are excluded from consideration, as there is uncertainty about the completeness of counts, there are five species that are of particular concern; Knot numbers dropped by more than 40% and Oystercatcher, Dunlin, Redshank and Turnstone numbers by more than 20%. The Purple Sandpiper population estimate dropped by over 30% but relatively small numbers of this species are encountered around the rocky coast of Ireland. The only species to show increases were Sanderling, Bar-tailed Godwit, Black-tailed Godwit and Greenshank.

In a previous WaderTales blog, there is detailed information about population estimates for Great Britain: Do population estimates matter? In Great Britain there were similar rates of decline for Redshank and Turnstone (measured over an eight-year, rather than five-year period) but much smaller falls for Knot, Oystercatcher and Dunlin. The possible causes of the changes in Ireland are discussed in the paper in Irish Birds. They include flyway-scale declines (e.g. Knot and Curlew) and the possibility that more birds from the east are now wintering on the coasts of mainland Europe (e.g. Dunlin and Grey Plover).

blog mixed

European context

Blog tableThe table alongside gives an indication of the relative importance of Ireland, Great Britain and, together, the British Isles to the birds that use the East Atlantic flyway during the winter period. The three columns show the percentage of each species found in each of the three regions. Summarised international counts, as used in the paper, were kindly provided by Wetlands International. In the case of four species, Ireland is host to a significant proportion of the Icelandic breeding population (Oystercatcher, Golden Plover, Black-tailed Godwit and Redshank). There’s a WaderTales blog about the close link between Ireland & Iceland. Another blog – Which, wader, when & why? – summarises migration to, from and through Britain & Ireland.

Notes: As mentioned earlier, there are questions about the precision of estimates for Lapwing and Golden Plover, although the population trends are reliable. The Ringed Plover percentage seems high (98% for British Isles) but this may well reflect the fact that the Non-estuarine Waterbird Survey has uncovered significant numbers of the species on the open shores of Great Britain. These extra birds are included in the new totals for GB but not in the flyway total. The percentages for Black-tailed Godwit seem low, as discussed further down.

Ireland is particularly important for Golden Plover, Ringed Plover, Bar-tailed Godwit and Black-tailed Godwit, as well as for the Icelandic subspecies of Redshank. Greenshank is excluded because the percentages are below 1% of the flyway population for Ireland and for Great Britain.

blog BA horiz

11% of Bar-tailed Godwit on the East Atlantic Flyway spend the winter in Ireland

Although there are important populations of breeding waders in Ireland, the shores and wet fields of the island really come into their own during July and August, when the first ‘winter’ waders arrive, and they only become quiet again in April and May, when the last birds head north and east to nest. A successful breeder is likely only to be away for four or five months, meaning that these waders will spend by far the largest part of the year in Ireland. The island is even more important for immature birds. Young Oystercatchers that arrive from Iceland, Scotland or perhaps Norway when just a few months old are likely to spend the next 30 months in Ireland before making their first trip north. There is a WaderTales migration blog about the Oystercatchers that fly from Iceland: Migratory decisions for Icelandic Oystercatchers.

blog OC

Curlew in the Republic

Curlew numbers in the Republic of Ireland illustrate the relative importance of the country for breeding and non-breeding populations. The winter population estimate for Curlew in the Republic is 28,300 but the most recent survey conducted by BirdWatch Ireland and NPWS, as summarised in the WaderTales blog Ireland’s Curlew Crisis, reveals that the number of breeding birds has crashed to just 138 pairs. Accounting for young Irish birds that have not started to breed, and even if we assume that all Irish birds stay in the country for the winter, then the total number of home-grown Curlew seen in non-breeding flocks is at most about 400. This means that every winter flock of 70 Curlew will contain an average of just one Irish bird. Far more deliver their curl-ew calls with a Scottish, Finnish or Swedish ‘accent’. The map below shows the migration pattern for Curlew ringed in or found in Britain & Ireland.

blog migration map

Black-tailed Godwit

In the table above, it looks as if 18% of Iceland’s Black-tailed Godwits spend the winter in Ireland. This is probably an underestimate of the importance of the Republic of Ireland and Northern Ireland to the species. The flyway total for Black-tailed Godwit is given as between 98,000 and 134,000 in the Irish Birds paper and the percentage figure is based on 110,000. These three figures are almost certainly too high, as they build upon country-based estimates that have subsequently been revised. The true figure is likely to be around 60,000 to 65,000 (J. Gill pers. comm.), which would suggest that the maximum winter count in Ireland of 19,800 represents at least 30% of the islandica Black-tailed Godwits. Add in extra birds that moult in Ireland in the autumn, before moving further south to countries such as Portugal, and other birds that spend spring months on the island, and Ireland becomes even more important for Black-tailed Godwits!

blog BTMost birdwatchers might associate flocks of waders with estuaries but Black-tailed Godwit is an excellent example of a species that also relies on inland fields, either close to estuaries or along river valleys. Whilst undertaking PhD research on Black-tailed Godwits in south-east Ireland, Daniel Hayhow showed that there is insufficient time to find enough estuarine food during the mid-winter tidal cycles, with birds topping up their resources on grassland. You can read more about the energetic consequences of choosing to winter in eastern England, Portugal and Ireland in this blog: Overtaking on migration. Site designation and planning decisions need to take account of the grassland feeding requirements of Black-tailed Godwits and other waders that do not spend all of their time on estuaries, particularly Curlew.

Conservation implications

Some of the issues facing waders may be related to threats that species face in the breeding grounds. However, it may be easier to introduce measures that provide better protection and feeding opportunities in the wintering area, as ways of maintaining populations through the non-breeding season, than it is to deal with problems in the High Arctic. (Although we can all help by reducing carbon emissions, in order to minimise global warming, of course).

blog OC SA

Reading the report, I was reminded of the need to consider a range of conservation issues:

  • Care needs to be taken when considering shoreline developments. These can directly remove habitat or squeeze the width of the intertidal zone.
  • Increased harvesting of shellfish can affect species such as Oystercatcher and Knot and brings risks of introducing alien species and diseases.
  • In the drive to cut carbon emissions, tidal, wave and wind power developments need to be sited in appropriate places.
  • Off-shore harvesting of growing kelp beds has been suggested, as a way of producing fertiliser and biofuels. This process could reduce protection for beaches and change the availability of resources for species such as Turnstone and Sanderling.
  • Grassland areas need to be considered (and not just estuaries) when planning protection for species such as Curlew and Black-tailed Godwit.

blog RKPaper

Estimates of waterbird numbers wintering in Ireland, 2011/12 – 2015/16. Brian Burke, Lesley J. Lewis, Niamh Fitzgerald, Teresa Frost, Graham Austin, and T. David Tierney. Irish Birds No. 41, 1-12.

There is a complementary paper in British Birds, covering Great Britain. The wader information is summarised in this blog: Do population estimates matter?


GFA in Iceland

WaderTales blogs are written by Graham Appleton, to celebrate waders and wader research.  Many of the articles are based on previously published papers, with the aim of making wader science available to a broader audience.

@grahamfappleton

Do population estimates matter?

blog top godwitsHow many waders spend the winter in Great Britain? The answer is provided within an article in British Birds entitled Population estimates of wintering waterbirds in Great Britain. It includes all the wader species from Little Stint to Curlew that are covered by the Wetland Bird Survey  This survey is based on monthly counts that take place at about 2000 wetlands and coastal sites. The main aim is to monitor the rise and falls in numbers over time.

Please note that Northern Ireland WeBS figures are included in a separate blog covering the island of Ireland that was published in Irish Birds.

Why do we need to know the total number of birds in Great Britain?

  • If we count the number of Curlew and we have a figure for the European population then we know that Great Britain is responsible for nearly 20% of Europe’s Curlew each winter, thereby strengthening the case for national conservation action;
  • If we have a national figure, then we know that a flock of 2000 Black-tailed Godwit represents (as it turns out) over 5% of the British total, which is a useful criterion when assessing the conservation importance of individual sites;
  • blog GKPopulation totals help to put annual percentage changes into context;
  • And simply because people ask questions such as “how many Greenshank are there in the country during the winter?”

So, here’s the bottom line. In their 2019 review of waterbird numbers in British Birds, a team from BTO, WWT, JNCC & RSPB reveal that an estimated total of 4.9 million waders spend the winter in Great Britain. For several species, GB holds a third or more of the East Atlantic Flyway population!

Making the counts

The population estimates owe a lot to those who undertake monthly Wetland Bird Survey (WeBS) counts on estuaries, lakes and waterways, during the winter months, year in and year out. Counts from the period 2012/13 to 2016/17 are used in the population estimates that form the basis for the 2019 review. WeBS data have many other uses, as you can read here: Wetland Bird Survey: working for waders.

blog CUFor species of wader that also make use of the open coast, the Non-estuarine Waterbirds Survey of 2015/16 (or NEWS III) provided additional data, updating the NEWS II figures from 2006/07.

The vast majority of our wintering Purple Sandpipers are found on open beaches and rocky shores, as well as large numbers of Turnstone, Ringed Plover and Sanderling, together with significant numbers of Oystercatcher, Curlew and Redshank. There’s more about NEWS in this slightly dated blog: NEWS and Oystercatchers for Christmas.

The last assessment of winter wader populations was made by the Avian Population Estimates Panel and published in British Birds in 2013 as Population estimates of birds in Great Britain and the United Kingdom (APEP3). In here, estimates for waders were largely based on WeBS data for the period 2004-09 and NEWS II. The new assessment is presented as Population estimates of wintering waterbirds in Great Britain and also published in British Birds. It uses WeBS information for the period 2012-17 and NEWS III data. Effectively, there is an 8-year or 9-year difference between the two sets of figures.

The biggest losers

blog graphicGreat Britain is extremely important in the context of the East Atlantic Flyway, as is obvious from the fact that the area holds nearly five million waders. The WeBs counts already monitor the ups and downs on an annual basis but this review provides an opportunity to turn the percentages into actual numbers. It is concerning that, over a period representing less than a decade, the average maximum winter count for six of the species that were surveyed dropped by a total of over 150,000. These big losers were Knot, Oystercatcher, Redshank, Curlew, Grey Plover and Dunlin, ordered by number of birds lost, with Knot seeing the biggest absolute decline.

In preparing the new estimates for the British Birds paper, an opportunity was taken to refine the way that populations are calculated, based on Use of environmental stratification to derive non-breeding population estimates of dispersed waterbirds in Great Britain, by Verónica Méndez et al. The new methodology explains some of the differences between percentage changes reported by WeBS and the percentage changes obtained by comparing the latest population estimates to those in APEP3.

blog KN graphic

The Knot estimate dropped from 320,000 to 260,000. This decline is bigger than might be expected from the counts that take place at sites covered by WeBS, being larger than the ten-year decline of 14% reported in the last WeBS report. Knot are mobile species within the North Sea and Atlantic Coast wintering area and it is possible that British losses may be explained, at least to some extent, by redistribution.

blog oyc graphThe drop in Oystercatcher numbers from 320,000 to 290,000 appears to be less than 10%, compared to a ten-year decline of 12% on WeBS. Improved analysis of NEWS data helped to add some more birds to the open-coast estimate so the 10% fall may underestimate the seriousness of the Oystercatcher situation. The 25-year Oystercatcher decline on WeBS is 26%, which is not surprising if you look at the changes to breeding numbers in Scotland, where most British birds are to be found. There’s more about this in: From shingle beach to roof-top.

blog RKThe Redshank decline of 26,000 is higher than would be predicted from WeBS figures, suggesting a drop of over 20% since APEP3, rather than ‘just’ 15% for the ten-year WeBS figure. This is a species that also features strongly in the Non-estuarine Waterbird Survey and that might explain the difference. Wintering Redshank are mostly of British and Icelandic origin, with the Breeding Bird Survey (BBS) suggesting a ten-year decline of 24% in our British breeding birds.

The Curlew is now globally recognised as near-threatened. The latest winter estimate is 120,000, down from 140,000 in APEP3. The new total represents between 14% and 19% of the European population, which means that we have a particular responsibility for this much-loved species. Only the Netherlands holds more wintering Curlew than Great Britain. Is the Curlew really nearly-threatened? is one of several blogs about Curlew in the WaderTales catalogue at www.wadertales.wordpress/about .

blog 2 DNIt has been suggested that the long-term declines of Grey Plover and Dunlin  may be associated with short-stopping, with new generations of both species wintering closer to their eastern breeding grounds than used to be the case. WeBS results indicate a 31% drop in Grey Plover and a 42% drop in Dunlin, over the last 25 years. There was a loss of 10,000 for both species between APEP3 and the new review, representing declines of 23% and 3% respectively.

The biggest winners

There are several big winners in the period between APEP3 (2004-09) and the new review (2012-16), although, in some cases, not all is as it seems.

The Avocet has seen further dramatic gains. with the estimated wintering population rising to 8,700. The increase is not quite as big as might have been expected, based on the 43% rise seen in ten years of WeBS counts, but it is still a dramatic continuation of a 40-year trend.

The numbers of Bar-tailed Godwit and Ringed Plover are both substantially higher but at least a proportion of each of these changes is linked to the better coverage and more sophisticated sampling methods that were discussed earlier. Bar-tailed Godwit increases may also reflect redistribution around the North Sea.

blog BW graphOne of the consequences of improved statistical techniques, as used this time around, is the apparent decline in the estimated population of Black-tailed Godwit. The new figure of 39,000 is 4,000 smaller than in APEP3, despite the fact that the WeBS graph clearly shows an increase. Interpolation using WeBs figures suggests that the earlier population estimate should have been 31,000, rather than 43,000.

Sanderling from Greenland spend the non-breeding season as far south as South Africa but  increasing numbers of birds are wintering in Great Britain and Ireland (25% increase in 8 years in GB and 13% in 5 years in Ireland). Interestingly, survival rates of English birds are just as high as those in Namibia. The losers are birds that spend the non-breeding season in equatorial Africa, as you can read here; Travel advice for Sanderling.

There are other winners too, as you can read in the paper. At the start, I posed the question “how many Greenshank are there in the country during the winter?”.  The answer is 810, representing an increase of 200 since APEP3. The vast majority of these wintering Greenshank are birds from the population that breeds in northern Scotland, as you can read in Migration of Scottish Greenshank.

Game species

The estimates for the three wintering waders that are still on the UK quarry list have not changed since APEP3 (published in 2011) as there are no new data available.

Golden Plover: The winter estimate remains as 400,000, as there has been no comprehensive, winter survey since 2006/7. Large numbers of Golden Plover arrive from Scandinavia, Europe and Iceland in the late summer, joining the British birds that choose not to migrate south or west. The GB breeding population is probably less than 50,000 pairs. Most breed in Scotland which has seen a breeding decline of 5% in the period 1995 to 2018 (BBS). Golden Plover is still ‘green listed’.

snipe-headerSnipe (Common): The winter estimate remains as 1,100,000 – a figure that was acknowledged in APEP3 as being less reliable than that of most species. At the same time, the GB breeding population was estimated as 76,000 pairs, indicating at least a 4:1 ratio of foreign to British birds, and that does not take account of the number of British birds that migrate south and west. Snipe are ‘amber listed’ but BBS suggests a recent increase of 26% (1995-2018). There is a WaderTales blog about  Snipe and Jack Snipe.

Woodcock: The winter estimate remains as 1,400,000 – another figure that is not considered to be particularly precise, with much variation between years. The diminishing breeding population is dwarfed by winter numbers, as you can read in this WaderTales blog, with increased attention being given to ways to afford better protection of red-listed, British-breeding birds.

Many of the Golden Plover, Snipe and Woodcock that spend winter in Great Britain are birds that breed in Fennoscandia (Finland, Sweden & Norway). The latest assessment of breeding numbers shows that populations of all three species are stable. See Fennoscandian Wader Factory.

January counts

blog BTThe paper in British Birds also includes a table of January population estimates, to provide data that are comparable to mid-winter counts in other countries. These figures are used in waterbird monitoring for the International Waterbird Census for the African Eurasian Flyway. The main table (and figures mentioned above) are average maximum winter counts (in the period September to March). Black-tailed Godwit is one species that illustrates the difference, with a mean of 30,000 in January and a mean peak count of 39,000. Having moulted in Great Britain, some Black-tailed Godwits move south to France and Portugal in late autumn, returning as early as February. January counts are therefore substantially lower than early-winter and late-winter counts. There is more about the migratory strategy employed by Black-tailed Godwits that winter in southern Europe in Overtaking on Migration.

Looking forward

blog BB coverThe authors have done a tremendous job. They have refined the way that estimates are calculated, they have combined the results from WeBS and NEWS III, and they have delivered population estimates for 25 wader species and many more other species of waterbirds. These population estimates will be used in conservation decision-making until the next set of numbers becomes available. Meanwhile, thousands of birdwatchers will count the birds on their WeBS patches in each winter month, every year. Without them, this paper could not have been written.

Before the next assessment, there will need to be another NEWS survey, to check up on species that use rocky and sandy shore birds, such as Purple Sandpipers, Turnstone and Curlew. Hopefully, there will also be a dedicated survey to assess Lapwing and Golden Plover numbers and perhaps we might find a way to refine the old estimates for Woodcock, Snipe and Jack Snipe.

Paper

Population estimates of wintering waterbirds in Great Britain. Teresa Frost, Graham Austin, Richard Hearn, Stephen McAvoy, Anna Robinson, David Stroud, Ian Woodward and Simon Wotton. Published in British Birds Volume 112. March 2019.

blog flying godwits


GFA in Iceland

WaderTales blogs are written by Graham Appleton, to celebrate waders and wader research.  Many of the articles are based on previously published papers, with the aim of making wader science available to a broader audience.

@grahamfappleton

Mission Impossible? Counting Iceland’s wintering Oystercatchers

If Norwegian Oystercatchers migrate south and west for the winter, how is it that thousands of Oystercatchers can adopt a stay-at-home strategy in Iceland, which lies at a higher latitude than most of Norway?

Braving the cold

As part of a project to try to understand why some Oystercatchers spend the winter in Iceland, when most fly south across the Atlantic, researchers needed to count the ones that remain. Unlike in the UK, where the Wetland Bird Survey can rely on over 3000 volunteers to make monthly counts of waders and waterfowl, it’s tough to organise coordinated counts of waders in Iceland. Winter weather, a small pool of birdwatchers and short days don’t help when you are trying to cover the coastline of a country the size of England.

blog wading

Up until 2016, the only winter wader data in Iceland came from Christmas Bird Counts, first run in 1956. These coordinated counts suggested that most Oystercatchers were to be found in southwest and west Iceland, which is also where most birdwatchers live, but with smaller numbers in areas such as the southeast. The maximum number of Oystercatchers found in any one year was 4466 birds but this excluded known wintering sites which were inaccessible or very hard to access. Some contributors to Christmas bird counts live in areas away from the well-populated west of the country, and they provided evidence that there were no Oystercatchers in the north, for instance. This information gave some guidance as to where to look for Oystercatcher flocks but could a small team of researchers and birdwatchers do a complete count of the resident component of the species in the middle of winter?

Blog snowy

 

Part one of the survey involved a group of well-prepared birdwatchers and researchers spending several days counting Oystercatchers in as many areas as possible of the southeast and in the whole of the west, from the southwest tip of Iceland (where Keflavik airport is situated) through to known wintering locations in the northwest fjords. The north and south coasts could largely be discounted; the north is too cold and the south coast is very barren.

Part two of the survey was carried out by air, allowing the addition of counts of the islands and inaccessible coastal sites in the Breiðafjörður Bay, as well as some key sites in Faxaflói Bay (see map). Flocks of roosting Oystercatchers were usually seen from afar and photographs were used to make counts without flushing the birds.

blog counts

Survey results

The ground-based wader surveys were carried out between 28 January and 3 February 2017 and the aerial survey took place on 16 February. In total, 11,141 Oystercatchers were counted, which nearly triples the previous Christmas total. As expected, the vast majority of Oystercatchers were found on wintering sites in SW and W Iceland. Large numbers of birds were found on sites not covered by the Christmas counts, particularly on the north side of Faxaflói Bay and during the aerial survey over Breiðafjörður Bay.

blog BoddiThe full results of the paper are presented in a new paper in the BTO journal Bird Study. (Click on title for link)

Population size of Oystercatchers Haematopus ostralegus wintering in Iceland Böðvar Þórisson, Verónica Méndez , José A. Alves, Jennifer A. Gill , Kristinn H. Skarphéðinsson, Svenja N.V. Auhage, Sölvi R. Vignisson, Guðmundur Ö. Benediktsson, Brynjúlfur Brynjólfsson, Cristian Gallo, Hafdís Sturlaugsdóttir, Páll Leifsson & Tómas G. Gunnarsson.

Resident or migrant? 

One of the key questions that researchers wanted to answer was ‘what proportion of the Icelandic breeding population is migratory?’ This is part of a bigger project exploring the causes and consequences of individual migratory strategies, as you can read in the previous WaderTales blog: Migratory decisions for Icelandic Oystercatchers. This project is a joint initiative by the universities of Iceland, East Anglia and Aveiro, led by Verónica Méndez.

blog familyIn order to estimate the proportion of migrants and residents it was necessary first to determine the total size of the Icelandic Oystercatcher population, based on a recent estimate of 13 thousand breeding pairs (Skarphéðinsson et al. 2016) . How many sub-adults are there to add to the 26,000 breeding birds?

Verónica Méndez and her team have shown that Oystercatchers fledge on average about 0.5 chicks per pair. Using estimates that 50% of these chicks are alive by mid-winter, that there is then a 90% chance of annual survival and birds typically breed when they are four years old, it was possible to come up with a total population of just over 37,000 birds.

Although the authors of the paper have produced the best winter estimate thus far, they note that it is a minimum – there could be small numbers of birds in other areas. At 11,141 out of 37,177 birds, the minimum estimate of the residential part of the population is 30%, leaving 70% to be distributed around the coasts of the British Isles and (in smaller numbers) along the coastline of mainland Europe.

Latitudinal expectation 

blog ringed birdTo put the migratory status of the Icelandic Oystercatcher into context with other Oystercatcher populations breeding in NW Europe, the authors collated information about the proportion of resident and migratory Oystercatchers in coastal countries between Norway and the Netherlands. They show that there is a strong latitudinal decline in residency. From Northern Norway (69.6°N) to Southern Sweden (57.7°N), where mean January temperatures are typically in the range of -1 to -4°C, only occasional individuals are found in winter, whereas populations in Denmark (55.4°N), where mean January temperatures 0.8°C, and sites that are further south and warmer mostly comprise resident individuals.

blog scenicThis cline in migratory tendency is also seen within the British Isles, which stretch from 60.8°N to 50.2°N. Writing in the BTO’s Migration Atlas, Humphrey Sitters reports that birds from the north of the British Isles have a median recovery distance of 213.5 km, whereas in the west, east, south and Ireland the respective figures are 35.5, 27.0, 6.0 and 13.5 km. In each group, there are birds that travel over 800 km, implying some degree of migratory tendency in birds breeding in every part of the British Isles.

Iceland lies between 63.2°N and 66.3°N, which puts it well within the latitudinal range of the ‘almost-all-migrate’ group of Scandinavian birds. The Icelandic proportion of 30% residency is likely to be a function of the temperature and geographical isolation of the island. Bathed by the relatively warm waters of the Gulf Stream, some coastal areas, particularly in the west of Iceland, provide a relatively mild oceanic climate and apparently ample food stocks to support high survival during most winters. On the other hand, days are very short. For an Oystercatcher that spends December in Reykjavik, the time between sunrise and sunset is just four hours and the average January temperature is -0.6°C. For a bird in Dublin day-length figure is almost twice as long, at seven and a half hours, and temperature is 5.3°C. Food availability may well be compromised by the time available to collect it, as previous studies have shown that feeding efficiency is on average lower at night.

blog of other wadertalesIceland might hold a higher proportion of residents than would otherwise be the case as it is far enough away from Britain (about 750 km to mainland Scotland) and Ireland for the sea crossing to potentially be a significant barrier. For migrants, time will need to be spent acquiring the reserves needed for the journey south in the autumn and north in the spring and the flights may well add costs in terms of survival probability.

There is a blog about the broader project to understand how individual birds become ‘programmed’ to be migrants or residents here: Migratory decisions for Icelandic Oystercatchers.

The migration option 

blog sightingsIf 30% of Oystercatchers are staying in Iceland this implies that up to 26,000 birds of Icelandic origin are to be found in the British Isles and on the western coast of Europe during the winter. Some of these – young birds that are yet to breed – can be found in these areas in the summer too. By the end of the summer of 2017, Verónica Méndez and her team had colour-ringed about 800 (500 adults, 300 juvenile) birds in Iceland, in order to try better to understand the reasons for the migratory/residency decisions that individuals make. Every dot on the map alongside (which was created on 1st June 2018) represents a migratory bird. Each record is valuable and there are lots more birds to try to find! Are there really no Icelandic Oystercatchers in the vast flocks of eastern England?

If you come across a colour-marked Oystercatcher, please report it to icelandwader@gmail.com 

blog bottom

 


GFA in Iceland

Graham (@grahamfappleton) has studied waders for over 40 years and is currently involved in wader research in the UK and in Iceland.  He was Director of Communications at The British Trust for Ornithology until 2013 and is now a freelance writer and broadcaster.