Iceland to Africa, non-stop

blog tagRinging had already suggested that Whimbrel might fly non-stop from Iceland to western Africa (see “Whimbrels on the move”). By using geolocators, Camilo Carneiro and his colleagues from the Universities of Iceland and Aveiro (Portugal) have now shown that this is the norm – and reveal just how quickly they get there.  In the paper reporting on this work, they contrast this rapid autumn movement with what happens on the return journey in spring.

Migratory journeys

European Whimbrel are made up of two distinct populations which mix in the wintering grounds. Three-quarters of the estimated total of 400,000 pairs breed in Iceland, with the rest breeding from Scandinavia through to Russia. In the autumn, most of the Icelandic birds fly straight to Africa. In the late summer and early autumn, the vast majority of birds seen in the UK and other European countries on the East-Atlantic Flyway are of continental (rather than Icelandic) origin. Most will continue their migrations to Africa.

Camilo Carneiro’s paper focuses on the Icelandic population. Although the breeding locations of the birds in the study all fell within a circle of radius 5 km, the wintering area represents about 1500 km of the coastal strip of western Africa and its off-shore islands. This includes Sierra Leone, Guinea-Conakry, Guinea-Bissau, Senegal, The Gambia, Mauritania and Morocco, with the highest density of the locations in Guinea-Conakry and Guinea-Bissau. On spring migration, although some manage a similar non-stop flight, most birds stopped off on their way back to Iceland. The largest number paused in Ireland, with others visiting western Britain, northwest France and Portugal. Marked birds flew an average of 6079 km in autumn and 6450 km in spring.

blog graphic

A sense of urgency

Most studies show that birds migrate faster in spring than in autumn, something that may be associated with a need to get to breeding sites as quickly as possible. Potentially, this enables them to take advantage of the short window in which to find a partner, lay and hatch eggs, look after chicks and fatten up for the return journey. Why is autumn migration quicker for Whimbrel that breed in Iceland and spend the winter in countries such as Guinea-Bissau?

blog tag postCamilo Carneiro and his colleagues have been studying the migrations of individual Whimbrels using geolocators. These small devices, attached to leg-rings, record the times of dawn and dusk for twelve months. When (or if!) an individual can be caught again in the subsequent breeding season, the geolocator can be removed and the data down-loaded, revealing a year’s worth of movements. One of the fascinating things about this study is that there are 56 migrations from 19 individuals; meaning that there are several birds for which repeat information has been collected. There’s a WaderTales blog about geolocators here (Are there costs to wearing a geolocator?)

The tags used on these Whimbrels did not just measure light levels, they also recorded temperature and whether the tag was wet or dry. These extra data helped to establish more precisely the periods in which birds were on migration, as air temperature is lower at higher altitudes and tags can only record wetness if birds are standing in water. Please see the paper and supporting materials for details of the methodology. Given that birds cannot fly without fuel, account is taken of the time taken to fatten up for migration, when estimating the whole migratory period.

blog banner africa

Wintering Whimbrel in Guinea-Bissau

Results

The paper by Camilo Carneiro in the Journal of Avian Biology provides details about the wintering and staging location of Icelandic Whimbrel but the main focus is on speed of migration. This was calculated as the ground distance travelled divided by migration duration, where this period includes fuelling time.

  • blog flightAll birds flew directly from Iceland to the wintering sites (30 autumn migrations from 19 individuals), a journey of four or five days.
  • Males departed earlier than females in spring and made a stopover in 83% of the cases (15 out of 18 individuals), while females stopped on 75% occasions (6 out of 8).
  • Migration duration (fuelling plus flight times combined) was significantly different between seasons, being 59.2 ± 6 days in autumn and 65.5 ± 6.2 days in spring, with no apparent differences between sexes.
  • Migration speed and ground speed were higher in autumn than in spring (migration speed: 102.6 ± 2.2 kmd-1 in autumn and 98.6 ± 5.3 kmd-1 in spring; ground speed: 16.50 ± 5.99 ms-1 in autumn and 13.07 ± 5.82 ms-1 in spring), with no differences between sexes.
blog tag in grass

Catching an individual Whimbrel, in order to remove its geolocator, becomes harder every year. A range of methods is used to catch birds on their nests.

With only a small sample, the following reported results were not statistically significant:

  • On average, males departed later than females on autumn migration. This makes sense, as males stay with their chicks longer than females.
  • In spring, males arrived into Iceland on average 2 days before females.

Explaining the patterns

The discussion section of the paper provides a fascinating review of some of the theories relating to migration physiology – it’s well worth a read. This is just a quick summary.

Autumn migration seems relatively straightforward; every tracked Whimbrel took a direct flight from Iceland to Africa. For Whimbrel migrating to Iceland from western Africa in spring, however, there seems to be a relatively small chance of being able to fly all the way in one hop (5 out of 26 northward flights were direct). The authors suggest that:

  • blog mangrove

    Whimbrel roosting in the top of mangroves at high tide

    When leaving Iceland at the end of the summer, Whimbrel are heading towards predictable resources which will be similar from week to week. Timing of departure is not critical and birds may be able to wait for helpful weather patterns.

  • On the journey south, wind conditions are generally more favourable than on the journey north, reducing the duration of direct flight.
  • Some birds may have sufficient resources for the northward flight, if weather conditions are helpful, but choose to stop off in western Europe (particularly Ireland) if the fuel gauge suggests that they might not be able to complete the crossing.
  • It is possible that the relatively recent addition of West African Bloody Cockles to the Whimbrel’s diet, in the Banc d’Arguin, may have improved the species’ capacity to fatten up quickly, increasing the possibility of a one-flight trip north.
  • Staging areas in western Europe, particularly Ireland, may provide relatively predictable resources that can be used to top-up reserves for the final 1500 km crossing of the Atlantic in spring. By using a stop-over, it may be possible to take on extra reserves that can be used in the early part of the breeding season.
  • There may be a stronger link between weather patterns in western Europe and Iceland than between western Africa and Iceland. Whimbrel that stop off in Ireland, or other countries on the Atlantic seaboard, may then depart in weather systems that are also associated with warmers spring conditions in Iceland.

blog no ringThere are many questions still to be answered but one thing is certain; as it says in the title of the paper, when the migration of the Icelandic Whimbrel is studied in detail, it is clear that there is faster migration in autumn than in spring. Here’s a link to the paper:

Faster migration in autumn than in spring: seasonal migration patterns and non‐breeding distribution of Icelandic Whimbrels Numenius phaeopus islandicus Camilo Carneiro, Tómas G. Gunnarsson & José A. Alves Journal of Avian Biology 10.1111/jav.01938

More about migration

Migrating birds make ‘decisions’ on timing and staging each year that can affect their personal survival and the chance of successfully raising young. Are these ‘strategies’ just the consequences of the circumstances that arise in a particular season? As scientists gather longer runs of tracking data on individuals, and can relate these to wind and weather patterns, it may be possible to gain a better understanding of the drivers of migratory patterns.

The team behind this paper (Camilo Carneiro, Tómas Gunnarsson & José Alves) have produced a number of complementary papers on wader migration, some of which have been covered in previous blogs:

WaderTales: Overtaking on Migration.  Alves, J. A., Gunnarsson, T. G., Potts, P. M., Gélinaud, G., Sutherland, W. J. and Gill, J. A. 2012. Overtaking on migration: does longer distance migration always incur a penalty? – Oikos 121: 464–470.

IBIS/BOU: Risking it all in a direct flight.  Alves, J. A., Dias, M. P., Méndez, V., Katrínardóttir, B. and Gunnarsson, T. G. 2016. Very rapid long-distance sea crossing by a migratory bird. – Sci. Rep. 6: 38154.

Gunnarsson, T. G. and Tómasson, G. 2011. Flexibility in spring arrival of migratory birds at northern latitudes under rapid temperature changes. – Bird Study 58: 1–12.

WaderTales: Whimbrels on the move.  Gunnarsson, T. G. and Guðmundsson, G. A. 2016. Migration and non-breeding distribution of Icelandic Whimbrels Numenius phaeopus islandicus as revealed by ringing recoveries. – Wader Study 123: 44–48.

WaderTales: Black-tailed Godwit pairs – the importance of synchrony.  Gunnarsson, T. G., Gill, J. A., Sigurbjornsson, T. and Sutherland, W. J. 2004. Arrival synchrony in migratory birds. – Nature 413: 646.

blog Iceland banner

The southern lowlands of Iceland (breeding grounds of Whimbrel) seen from Þríhyrningur

 


GFA in Iceland

Graham (@grahamfappleton) has studied waders for over 40 years and is currently involved in wader research in the UK and in Iceland.  He was Director of Communications at The British Trust for Ornithology until 2013 and is now a freelance writer and broadcaster.