January to June 2022

Here are brief summaries of the first nine WaderTales blogs of 2022. As ever, I am grateful to the authors of the papers that underpin the blogs; they have worked with me to make sure that I get the stories right! I have not covered every new paper; perhaps your favourite is in the pipeline or perhaps I did not happen to spot it? The blogs are described in order of publication.

Welsh Oystercatchers

To explain how flexible Oystercatchers can be in response to changes in their food supply, Katharine Bowgen has brought together long-term data collected by wader ringers and WeBS counters, and added in annual assessments of cockle stocks on the Burry Inlet (South Wales). This paper has a particular resonance, as I remember teaching students about the Burry Inlet Oystercatcher controversy of the 1970s, when complaints from shellfishers led to the deaths of thousands of birds. We understand more about the relationship between shellfish stocks and bird numbers now but what happens when Oystercatchers can’t find food? This paper makes a strong case for the protection of networks of sites, so that individuals have alternatives when needed.

Australian stock-take

One of the great joys of writing WaderTales blogs is that I get to ‘visit’ the flyways of the world without having to burn carbon. How many shorebirds use the East Asian-Australasian Flyway? is a flyway-wide stock-take of the waders that visit Australia and New Zealand, led by Birgita Hansen. It is shocking that a flock of 350 Far-eastern Curlew now constitutes 1% of the global population and that the population of Curlew Sandpipers has halved in double-quick time, but the key strength of the paper is the clear explanation of a methodology that can be used in the future, to monitor changes in numbers.

Chick vocalisation

Big analyses of data sets are very important but it’s lovely when you learn more about the natural history of species that birdwatchers know well. In Australia, Kristal Kostoglou recorded the calls of the chicks of Red-capped Plovers and Southern Masked Lapwings, that were being ringed and measured in the hand. In Chick squeaks I describe how calls get deeper with age, which is not surprising, but that the calls of males and females can become distinguishable from a very early age. Male Red-capped Plover chicks are more demanding than their sisters!

Trans-oceanic migration

There have been several recent wader papers that interpret data obtained from birds when on migration. One of the interesting questions being asked is, “Do shorebirds account for wind displacement continuously or correct for drift later?”. Navigating a vast ocean summarises Jenny Linscott’s work on Hudsonian Godwits, as they cross the Pacific Ocean and then the Gulf of Mexico, on their way from Chile to Alaska. She and her fellow authors show that flocks make continuous adjustments, demonstrating that birds ‘know where they are’ and giving them the ability to fly extremely long distances without running out of energy. There’s some clever maths too!

Hiding in the trees

In the second paper from her PhD, Triin Kaasiku looks at the breeding success of Estonian coastal waders that nest at different distances from woodland. Keep away from the trees describes these ‘edge effects’. In a part of the world where waders are in diminishingly short supply, hatching success is six time as high in open areas as in areas that are within one kilometre of forest edge. The Baltic coast used to be a haven for species such as Curlew and Dunlin but reduced grazing and forestry plantations have provided hiding places for predators. Alongside increased predation, breeding waders are also having to contend with an increasing numbers of nest inundations, arising from summer storms.

Curlew hunting

Curlew hunting stopped in Great Britain in 1982, when the declining wintering population received protection under the new Wildlife & Countryside Act. A fascinating paper by Ian Woodward and BTO colleagues teases apart the positive effects of the cessation of shooting and more benign winter weather. It is summarised as Curlew: after the hunting stopped.

I am old enough to remember when Curlew were hunted in East Anglia. The pâté made from autumn-shot birds is reputed to have been very tasty; I recall Clive Minton getting back in his land-rover and reporting that he had been offered some, when asking for permission to cannon-net Curlew on a Norfolk land-owner’s estate.

Personal appreciation of Whimbrel

On 27 April, Jenny Gill and I were at Eyrarbakki, on the south coast of Iceland. As we watched, small groups of Whimbrel were coming in off the sea. Others were resting on the seaweed-covered rocks, a few were feeding and some flew straight by. Watching waders arrive in Iceland is always magical but, from sightings of satellite-tagged Whimbrel, we could be pretty sure that these tired birds had just completed five-day, direct flights from west Africa. I could not wait to get back to base and to share our observations. It was a good excuse to round up the Whimbrel stories in other WaderTales blogs, as you can read in Whimbrels arrive in Iceland.

Power-line problems

We have seen huge changes in Iceland, since we first visited in 2000, but how are these affecting shorebirds? In the first paper of her PhD (Effects of land conversion in sub-arctic landscapes on densities of ground-nesting birds), Aldís Pálsdóttir investigated how distributions of breeding waders are affected by power-lines. She discovered significantly depressed numbers several hundred metres from the transmission lines, with Whimbrel and Redshank being the most obviously impacted. Her results are written up as Power-lines and breeding waders. With an increasing global reliance on electricity, these are important findings for planners and conservationists.

Conflict with forestry

Just a few days later, Aldís Pálsdóttir’s second paper was published. By mapping distributions of breeding waders in the vicinity of forests, she has shown that new plantations have a massive effect on distributions. In lowland Iceland, the most vulnerable species appear to be Dunlin and Oystercatcher, followed by Whimbrel, Black-tailed Godwit and Golden Plover. It should be noted that three-questers of Europe’s Whimbrel nest in Iceland, as well as half of the Golden Plover and Dunlin. Aldís and her fellow authors argue that Iceland’s waders need a strategic forestry plan. They estimate that recently-planted woodland and forests have already removed the breeding territories of tens of thousands of waders.

Blogs from previous years

WaderTales blogs in 2021

WaderTales blogs in 2020

WaderTales blogs in 2019

WaderTales blogs in 2018

WaderTales blogs in 2017

WaderTales blogs are written by Graham Appleton (@GrahamFAppleton) to celebrate waders and wader research. Many of the articles are based on published papers, with the aim of making shorebird science available to a broader audience.

Iceland’s waders need a strategic forestry plan

More and more trees are being planted in lowland Iceland – and further increases are planned, in part encouraged by the suggestion that this will mitigate for climate change. Forestry is potentially bad news for Whimbrel, Black-tailed Godwit and other waders that breed in open habitats, and which migrate south to Europe and Africa each autumn. Are there ways to accommodate trees while reducing the damage to internationally important populations of waders?

Pressure on Iceland’s breeding waders

Iceland is changing; more people want second homes in the countryside, the road network is being developed to cope with more and more tourists, new infrastructure is needed to distribute electricity, agriculture is becoming more intensive and there is a push to plant lots more trees. The south of the country is seeing the most rapid loss of open spaces, providing opportunities to study how these incursions affect ground-nesting species, particularly breeding waders.

One of the big changes, especially in Southern Iceland, has been the planting of non-native trees, as shelter belts around fields and country cottages and, more significantly, as commercial crops. Iceland has been largely treeless for hundreds of years but climatic amelioration has facilitated rapid forestry development in areas where tree growth was previously limited by harsher environmental conditions. Seeds of some non-native species are blown on the wind for a kilometre or more, to germinate in open land, well beyond the edge of planned forests.

Most of the new forests are in lowland areas, where we also find the most important habitats for many ground-nesting bird populations. Lodgepole pines may be good news for Goldcrest and Crossbills but not for species such as Golden Plover, Dunlin & Redshank. For breeding waders, the most obvious impact of a new forest is direct loss of breeding habitat but trees can have wider effects, by providing cover for predators and breaking up swathes of open land that are used at different stages of the breeding season. Little is currently known about how predators in Iceland use forest plantations but any perceived risks of predator presence and reduced visibility is likely to influence densities of birds in the surrounding area.

Iceland’s open habitats have suited breeding waders for hundreds of years

Aldís E. Pálsdóttir’s studied changing bird populations in lowland Iceland during her PhD at the University of Iceland, in collaboration with researchers from the University of East Anglia (UK) and the University of Aveiro (Portugal). Among the most concerning of these changes is the rapid expansion of forestry in these open landscapes.

Assessing the potential impacts of trees

In a 2022 paper in the Journal of Applied Ecology, Aldís assesses whether densities of ground-nesting birds are lower in the landscape surrounding plantations and whether these effects vary among plantations with differing characteristics. She and her fellow authors then quantified the potential impact of differing future afforestation scenarios on waders nesting in lowland Iceland.

Forestry currently covers about 2% of Iceland’s land area so the potential for growth is massive. In 2018, the Icelandic government provided additional funding to the Icelandic forest service to increase the number of trees planted, with a goal of enhancing carbon sequestration. As forestry primarily operates through government grants to private landowners, who plant trees within their own land holdings, plantations typically occur as numerous relatively small patches in otherwise open landscapes. These features make Iceland an ideal location in which to quantify the way that plantations affect densities of birds in the surrounding habitats, and to identify afforestation strategies that might reduce impacts on globally important wader populations.

To measure the effects of plantation forests on the abundance and distribution of ground-nesting birds, in particular waders, 161 transect surveys were conducted between May and June 2017. To avoid systematic bias arising from possible “push effects” of corralling birds in front of the surveyor, surveys were conducted along transects that started either at the edge of the plantation, with the observer moving away (79 transects), or started away from the plantation, with the observer walking towards it (82 transects). Please see the paper for the full methodology. The variation in density with distance from plantation was used to estimate the likely changes in bird numbers, resulting from future afforestation plans, and to explore the potential effects of different planting scenarios.

Bird communities change around plantations

Snipe densities are highest close to young forests

On the transects, 3713 individual birds of 30 species were recorded. The nine most common species (excluding gulls, which rarely breed in the focal habitats) were seven waders (Oystercatcher, Golden Plover, Dunlin, Common Snipe, Whimbrel, Black-tailed Godwit & Redshank) and two passerines (Meadow Pipit & Redwing). These species accounted for 88% of all birds recorded.

  • Of the seven waders, Snipe was the only one found in significantly higher numbers closer to plantations. Snipe density declined by approximately 50% between the first (0-50 m) and second (50-100 m) distance intervals, suggesting a highly localised positive effect of plantations on Snipe densities.
  • Densities of Golden Plover, Whimbrel, Oystercatcher, Dunlin and Black-tailed Godwit all increased significantly with increasing distance from plantations. Dunlin and Oystercatcher showed the largest effect (~15% increase per 50 m), followed by Whimbrel (~12%), Black-tailed Godwit (~7%) and Golden plover (~4%).
  • Although Redshank did not show a linear relationship with distance from plantation edges, densities were lowest close to the plantation edge.
  • There were more Redwings close to woodland edges but Meadow Pipit showed no change in density with distance from plantations.

Golden Plover, Whimbrel and Snipe were found in lower densities close to the tallest plantations (over 10 m), when compared to younger plantations (tree height 2m to 5m), suggesting that the impact of forests gets more pronounced as the trees grow. Plantation density and diameter had no additional effect on the species that were in lower densities closer to the plantations, implying that the mere presence of plantations induces the observed changes in abundance. See the paper for more details.

The bigger picture

Aldís Pálsdóttir and Harry Ewing walked every step of every transect and made detailed counts of what they saw – data that are invaluable when considering local impacts of plantations – but the paper becomes even more interesting when the authors look at the bigger picture. When plantations are distributed across these open landscapes, in different configurations, what will be the accumulated effects on the numbers of breeding waders? They estimate likely changes in abundance resulting from planting 1000 ha of plantation in different planting scenarios, ranging from a single block to lots of small patches.

  • Planting 50 smaller patches of 20 ha, instead of 1000 ha of forest in one large patch, is estimated to double the resulting decline in abundance (because there is more forest edge and hence a bigger effect on more open habitat)
  • This effect increases even further as the patches become smaller; in their models, planting 1000 blocks each of 1 ha would have nine times the impact of planting one forest of 1000 ha.
  • Proximity of woodland seems to be the driver of local distributions of breeding waders so the authors suggest that the amount of edge (relative to area) should be minimised, to reduce the impact of a plantation – which means making forests as near circular as possible.

It is clear that fewer larger forestry plots are likely to be less bad than lots of small, local plantations, in terms of the effects on wader populations. The figure below illustrates how much more land is affected when one woodland is replaced by four with the same total area. The grey area (equivalent to a 200 metre annulus) accounts for 88 hectares in the one-patch illustration and 113 hectares for four patches.

An urgent need for action (and inaction!)

Iceland holds large proportions of the global nesting populations of Golden Plover (52%), Whimbrel (40%), Redshank (19%), Dunlin (16%) and Black-tailed godwit (10%) (see Gunnarsson et al 2006) and is home to half or more of Europe’s Dunlin, Golden Plover and Whimbrel. Data in the table alongside have been extracted from Annex 4 of the report, which was discussed at the 12th Standing Committee of AEWA (Agreement on the Conservation of African-Eurasian Migratory Waterbirds) in Jan/Feb 2017.

Aldís measured the areas of 76 plantations in her study, using aerial photographs. The total area of woodland was about 2,800 ha and the total amount of semi-natural habitat in the surrounding 200 m was about 3,600 ha. Using the reduced densities that she found on the transects and the direct losses for the plantations themselves, she estimates potential losses of about 3000 breeding waders, just around these 76 forest plots. Extrapolating this figure to the whole of the Southern Lowlands of Iceland, the total losses resulting from all current plantations are likely to already be in the tens of thousands. Worryingly, the densities measured on the transects in this paper (even 700 m from forest edge) were well below those measured (slightly differently) in previous studies of completely open habitat, suggesting that losses may already be significantly higher than estimated in the paper.

A scary statistic in the paper is that “6.3% of the Icelandic lowlands is currently less than 200 m from forest plantations”. Given the incentives to plant lots more trees, this is particularly worrying for species such as Black-tailed Godwits, the vast majority of which breed in these lowland areas (between sea level and 300 metres).

Non-native trees are spreading beyond the boundary of a planned forest

It has been suggested that breeding waders might move elsewhere when impacted by forestry but migratory wader species are typically highly faithful to breeding sites. If birds are not going to move to accommodate trees, then perhaps plantations should be located where bird numbers are naturally low, such as in sparsely or non-vegetated areas, at higher altitudes and on slopes? Planning decisions could usefully be informed by surveys of breeding birds, to identify high-density areas that should be avoided.

The severe impact that planting forests in open landscapes can have on populations of ground-nesting birds emphasises the need for strategic planning of tree-planting schemes. Given Iceland’s statutory commitments to species protection, as a signatory to AEWA and the Bern Convention on the Conservation of European Wildlife and Natural Habitats, and the huge contribution of Iceland to global migratory bird flyways, these are challenges that must be addressed quickly, before we see population-level impacts throughout the European and West African Flyway.

To learn more

The take-home message from this work is clear. Local planning decisions and the ways in which forestry grants are allocated are producing a patchy distribution of plantations across the lowlands of Iceland, and this is bad news for breeding waders.

The paper at the heart of this blog is:

Subarctic afforestation: effects of forest plantations on ground-nesting birds in lowland Iceland. Aldís E. Pálsdóttir ,Jennifer A. Gill, José A. Alves, Snæbjörn Pálsson, Verónica Méndez, Harry Ewing & Tómas G. Gunnarsson. Journal of Applied Ecology.

Other WaderTales blogs that may be of interest:

Forest edges

Work by Aldís Pálsdóttir (pictured right)

Changing agricultural systems in Iceland (work by Lilja Jóhannesdóttir)

WaderTales blogs are written by Graham Appleton (@GrahamFAppleton) to celebrate waders and wader research. Many of the articles are based on published papers, with the aim of making shorebird science available to a broader audience.

Power-lines and breeding waders

Around the globe, people are consuming more energy, much of which is delivered to cities, towns, individual homes and businesses via over-head electricity cables. In a paper in Ibis, Aldís E Pálsdóttir and colleagues investigate the effects of power-lines on Iceland’s breeding waders. This is the first of several papers from Aldis’ PhD thesis, in which she seeks to understand how forestry and the sprawl of new infrastructures (roads, cottages and power-lines) are changing bird distributions within what were previously open landscapes.

Breeding waders in Iceland

Iceland is a hot-spot for breeding waders, holding half or more of Europe’s Dunlin, Golden Plover and Whimbrel, in a country that is a bit smaller then England. In a 2017 report prepared by AEWA (Agreement on the Conservation of African-Eurasian Migratory Waterbirds), in response to concerns about the effects of afforestation on Iceland’s waterbirds, we learn that:

“Iceland is second only to Russia in its importance as a breeding ground for migratory waterbirds in the AEWA region. It supports the most important breeding populations in Europe for six species of waders and is the second most important country for three.”

Data in the table alongside have been extracted from Annex 4 of the report, which was discussed at the 12th Standing Committee of AEWA in Jan/Feb 2017.

Power lines

For waders nesting in Iceland, power-lines are a new addition to a once-open landscape. Pylons provide potential nesting opportunities for Ravens and perches for Gyrfalcons, while the wires between them are a collision risk. Under power-lines, carcases of swans, geese and waders may attract scavenging Arctic Foxes and Ravens, thereby increasing the activities of nest predators. Perhaps these actual and perceived threats affect densities of breeding waders in the vicinity? Or might birds react to something less obvious, such as the emission of UV light or electromagnetic radiation?

In Iceland, the vast majority of electricity is produced from hydropower or geothermal sources, often long distances from the areas in which the power is used. A new move to develop the wind energy sector has the potential to further add to the number of power lines and introduce them in more areas of the country. Much of the increase in electricity production over the last fifty years has been used to fuel industries such as aluminium smelting and there is the potential to further expand generation capacity, perhaps exporting some electricity to other countries.

Much of Iceland’s electricity is used to power aluminium smelters (here, in Hvalfjörður)

Counting the birds

Aldís counting waders on a transect

Aldís conducted the fieldwork for this study between the 6th May and the 20th June 2019, counting birds along 85 transects of between 300 m and 500 m, running perpendicular to power lines. The full methods are described in the paper but it is interesting to see that they included a check to see whether there were different results if walking towards or away from the power lines. Each transect was divided into intervals of 50 m length, each corresponding to 1 hectare of surveyed land. For each power line, Aldís recorded the number of cables, pylon characteristics, and the height and voltage of the line.


In total, 1067 birds of 21 different species were recorded on the 85 transect surveys. Over 90% of sightings were of eight species considered in the subsequent analysis: Dunlin, Black-tailed Godwit, Golden Plover, Meadow Pipit, Redshank, Redwing, Snipe and Whimbrel. Having analysed the data, Aldís and her colleagues concluded that:

  • For all eight species combined, the areas closest to the power lines (0-50 m) supported densities of approximately 112 birds/km2 (±13 SE) which increased by approximately 58% to 177 birds/km2 (±24 SE), in the sector that was between 450-500 m away from the power-lines. On average, there was a 4% increase in abundance between adjacent 50 metre bands.
  • At the species level, Redshank (figure below) and Whimbrel density increased significantly with distance from power lines (18% and 9% per 50 m, respectively) but no other significant effects were detected for other species individually.
  • There were no detectable difference between types of power-lines or relating to the voltages of the electricity they carried.

Implications of the research

In the paper’s discussion there are questions as to why densities of Redshank and Whimbrel (right), in particular, are lower near power-lines. The two species behave differently while nesting, with Redshanks being nest-hiders and Whimbrel nesting in the open, but previous research has shown that their nest predation rates are quite similar (see Where to nest?).

The reason why significant reductions in density close to power lines were apparent for Whimbrels and Redshanks (but not for other species) is not clear but the authors suggest that sample sizes may have been too low for there to have been measurable effects for species such as Dunlin and Golden Plover (below).

Power lines could have direct impacts, such as increased collision risk, but this may be difficult to establish directly, as the authors suggest that carcasses are likely to be quickly removed by scavengers.

Ravens may find it easier to find and predate nests if there are pylons or wires on which to perch but it will be hard to discriminate between an actual predation effect, reducing numbers in areas close to power-lines, and the avoidance of risky areas because of a perceived threat of predation. This is discussed in Mastering Lapwing conservation.

Given the depressed density of ground-nesting bird species in the vicinity of overhead power lines, the authors of the paper suggest that burying power lines might be a better option, even though there would be temporary disturbance to the ground during installation.

What are the implications for Iceland’s breeding waders?

It would be interesting to calculate how many Whimbrel and Redshank (left) territories would be lost over the course of a 50 km run of power-lines through open landscapes – and then extrapolate that to 500 km and 5,000 km. As shown in the earlier table, 75% of Europe’s Whimbrel breed in Iceland. How vulnerable are they to power-line infrastructures and what might be the impact on a breeding population of over 300,000 pairs?

This is the first of several papers from Aldis’ thesis, in which she seeks to understand the current rapid changes to Iceland’s lowland landscapes. Links to other blogs and papers will be added as they appear. It should soon be possible to reveal the combined effects of these incursions into open wader habitats, by considering plans that might affect these areas over the next twenty years, working out potential losses and setting these numbers in a flyway context.

This paper is published as:

Effects of overhead power-lines on the density of ground-nesting birds in open sub-arctic habitats. ALDÍS ERNA PÁLSDÓTTIR, JENNIFER A. GILL, SNÆBJÖRN PÁLSSON, JOSÉ A. ALVES, VERÓNICA MÉNDEZ, BÖÐVAR ÞÓRISSON & TÓMAS G. GUNNARSSON. Ibis. https://doi.org/10.1111/ibi.13089

Here’s a link to another blog about Aldís Pálsdóttir’s research: Iceland’s waders need a strategic forestry plan.

A complementary set of papers by Lilja Jóhannesdóttir investigated how changes to Iceland’s farming may also be affecting breeding waders. These are discussed in three WaderTales blogs:

WaderTales blogs are written by Graham Appleton (@GrahamFAppleton) to celebrate waders and wader research. Many of the articles are based on published papers, with the aim of making shorebird science available to a broader audience.