Generational change

blog TGG on postIn a changing world, with more chaotic weather patterns and rapidly altering habitats, migratory birds are faced with opportunities and challenges. Long-term monitoring of colour-ringed Black-tailed Godwits, during a period of range expansion and phenological change, has revealed that individuals behave consistently over time but that the behaviour of new generations is moulded by the conditions they encounter.

A changing world 

When trying to explain observed changes in the distributions and annual cycles of migratory birds, there are many things to consider:

  • blog VM y flag

    Colour-rings enable life-time tracking. This bird, caught on its nest, had been ringed as a chick.

    Are individual birds able to take advantage of new breeding and non-breeding sites, as they become available, particularly if other areas become less suitable?

  • Are individuals able to change the timings and patterns of migration?
  • Do individuals adjust their migration routes as a consequence of changes in stop-over or wintering areas?
  • If individuals do not change what they do, how do we explain range expansions and changes in timing of migration?

Put simply, how does climate change lead to changes in distribution of migratory birds? Answering this question is key to being able to predict the rate and direction of future changes, and to assess whether our existing networks of protected sites will continue to support populations in the way that was intended. This issue was tackled by Jennifer Gill, José Alves and Tómas Gunnarsson in their paper “Mechanisms driving phenological and range change in migratory species”, published in Linking behaviour to dynamics of population and communities: applications of novel approaches in behavioural ecology and conservation, a special issue of Philosophical Transactions B (Royal Society).

Potential models

Change could happen in two main ways:

  • Individuals could relocate – having knowledge of a range of available conditions, they can choose to move elsewhere.
  • New generations could settle in new areas (in the breeding season, the non-breeding season or both) and/or adopt new migratory strategies.
blog map

Map that illustrates range expansion

Working out whether change happens through individual movement or generational shifts can only be done by life-long tracking of individuals, in populations in which range change is happening. The Icelandic population of Black-tailed Godwit is ideal for such an investigation. Black-tailed Godwits have been expanding into new breeding areas of Iceland for over 100 years, as discussed in this WaderTales blog. Population growth has been facilitated through warming spring conditions, as discussed in From local warming to range expansion.

blog TGG juvs

Naive youngsters, gathering together before migration

Icelandic Black-tailed Godwits fly south in the autumn, to spend the winter in the British Isles, The Netherlands, Belgium, France, Spain and Portugal. As numbers have grown, winter counts have increased in many areas, with new flocks appearing and expanding on estuaries and areas of wet grassland where the species was previously absent or scarce.

 

Winter distribution

The Wetland Bird Survey shows that there are three times as many Black-tailed Godwits wintering in Great Britain as there were 25 years ago. The biggest changes in numbers have occurred on estuaries in the northwest of England, with the Morecambe Bay winter maximum rising from about 180 to 3200, for instance. Where have these extra birds come from?

blog juvs on Axe

These young birds happen to have ended up on the Axe Estuary in Somerset

Black-tailed Godwits have been ringed in Iceland for nearly twenty years, providing a pool of known-age adults for which natal sites are known. Winter observations of colour-ringed individuals have shown an interesting pattern; birds breeding in newly-colonised areas, particularly in north and east Iceland, are the ones that are more likely to be found in newer winter sites.

In their paper, the authors suggest that birds nesting in these colder areas, where spring comes later, will be fledging quite late and leaving Iceland after adults have departed. With no experienced birds to follow, these young birds may well stop off at the first suitable site, many of which are in the north of the wintering range, and then they return to breed in their natal sites. Birds in Morecambe Bay don’t know that days are longer and the weather is kinder for other birds that travel further south to wintering areas such as Portugal.

blog RS Dee

Wintering birds in Northwest England

Observations from birdwatchers show that the same colour-ringed individuals are nearly always found at the same wintering sites each year. Whatever mechanism is producing this new-breeding-site to new-wintering-site link, it is becoming clear that older birds continue to do what they have always done, with changes in distribution happening as a result of a generational shift.

The annual cycle

Colour-ringed Black-tailed Godwits have been tracked for over 25 years, with a small number of individuals contributing data for the whole of this period. This tracking information can be used to ask how much individuals move around and experience different sites and to assess whether individuals from different generations are using different parts of the range.

Using colour-rings, the Black-tailed Godwit team has discovered that, although individuals can live for over 20 years, in that time they generally use a total of only about four sites between leaving Iceland in late summer and returning in the spring. Basically, individual birds have very limited experience of sites and there is no evidence that they have moved to occupy different sites as, for instance, winter conditions have changed.

blog infographic

Spring arrivals in Iceland

Colour-ring observations have shown that individual birds do not change their breeding or wintering locations and that migrating individuals often appear in the same stop-over sites year after year. The timing of movements is also pretty consistent, especially in the spring. A previous WaderTales blog called Why is spring migration getting earlier? demonstrated that the timing of  migration of individual Black-tailed Godwits varies very little, with observed shifts in the period of migration being driven by young birds returning to Iceland for the first time on average doing so somewhat earlier than previous generations. Once individual birds settle into a timing pattern, they stick to it.

blog LJ arrivals

Black-tailed Godwits, newly arrived in Iceland after crossing the Atlantic

Migration patterns

As discussed above, individual Icelandic Black-tailed Godwits have experience of only a small number of sites, which they use on an annual cycle. When migrating, a bird will generally use the same stop-over site when breaking its journey south, to undertake autumn moult, or on their way north, to take on fat for the trans-Atlantic journey. There is a range of spring migratory strategies in islandica Black-tailed Godwits, as discussed in Overtaking on migration.

blog wwrwOnce established, the annual migratory programmes of individuals rarely change, as illustrated by the map to the right. Colour-ringed Black-tailed Godwit W-WR/W regularly moulted on the Wash, in eastern England, before spending the late winter and spring in northwest England. In the late summer of 2002 he was reported at Slimbridge on 18th and 20th July but back on the Wash on the 25th. Having made the Atlantic crossing and ended up in southwest England, he was able to correct what he may have perceived to be his mistake, returning to the moulting area that he had been using since at least 1996.

Individuals might not change their annual migration routes but we do see changes in numbers on different sites that are used during migratory stop-overs. In a paper published in 2018, Mo Verhoeven and colleagues investigated whether observed changes in migratory patterns of a population of the limosa subspecies of Black-tailed Godwit were caused by individuals altering their strategies or by generational change.

Limosa Black-tailed Godwits leave breeding areas in countries such as The Netherlands in late summer, heading south to either West Africa or Iberia, where they spend the winter. In spring they all gather in staging sites in Portugal and Spain, typically on rice fields. Over the course of less than ten years, the average peak number in Extremadura (Spain) has dropped from about 24,000 to 10,000, while the numbers on the Tagus and Sado estuaries rose from 44,000 to 51,000. These changes took place during a period of rapid population decline, as described in this blog focusing on a paper by Rosemarie Kentie and colleagues.

blog VM Tagus

Limosa Black-tailed Godwits feeding in a rice field in the Tagus estuary

Mo Verhoeven et al have shown that this rapid population-level shift in spring stop-over sites from Spain to Portugal, 300 km further west, was driven by young godwits increasingly using Portugal in the period January to March, instead of Spain. Nearly all of the older birds stuck with the routes they knew. The paper is Generational shift in spring staging site use by a long-distance migratory bird.

Change happens to birds

One thing that is becoming clear in Black-tailed Godwits is that birds are being affected by change – individuals do not have the knowledge or flexibility to effect change. Even in long-lived birds, like Black-tailed Godwits, we see no evidence of individuals altering what they do over what is now two decades, despite the fact that the species’ migration dates, wintering areas and migration routes have all perceptibly changed over the same time period. It’s all about generational change. The behaviour patterns of young birds arise from the conditions they encounter in the first year of life, after which they are repeated.

Details of the Generational Change paper by Gill et al

blog LJ sum plumThe paper at the heart of this blog is: Mechanisms driving phenological and range change in migratory species by Jennifer Gill, José Alves and Tómas Gunnarsson, from the Universities of East Anglia (UK), Aveiro (Portugal) and Iceland. It is published in Linking behaviour to dynamics of population and communities: applications of novel approaches in behavioural ecology and conservation, a special issue of Philosophical Transactions B (Royal Society).

The paper could not have been produced without the help of “thousands of observers of colour-ringed godwits who have made these analyses possible”. This WaderTales blog is a celebration of the work they do: Godwits and Godwiteers.


GFA in Iceland

WaderTales blogs are written by Graham Appleton, to celebrate waders and wader research.  Many of the articles are based on previously published papers, with the aim of making wader science available to a broader audience.

@grahamfappleton

 

Time to nest again?

blog Snipe TGGEarly return to breeding areas is widely acknowledged to be ‘a good thing’ but why? Some people suggest that early migrants can choose the best territories, others argue that early chicks have a disproportionately high chance of fledging but there are other explanations too. In their paper in Ecology & Evolution, Catriona Morrison and her colleagues ask how much of the advantage of being an early migrant could be associated with having an option to nest again, if the first attempt fails.

Setting the scene

In a previous WaderTales blog, about Icelandic Black-tailed Godwits, there is clear evidence that the species is increasing in number and spreading into new breeding areas. In another blog you can read that the expansion is linked to warmer spring conditions, which allow earlier nesting. How might this change in nesting phenology influence overall productivity and contribute to the population growth in Black-tailed Godwits, and do the same processes work for other species?

blog oyc godwit

Individual Black-tailed Godwits that arrive in Iceland early each year may have a higher chance of nesting successfully, just because they have time to try again if the first nest fails

In their 2019 paper, Catriona Morrison and her colleagues from the Universities of East Anglia (UK), Iceland and Aveiro (Portugal) used a simulation model to ask whether the greater time available for laying replacement clutches can create a pattern of increased productivity among early-arriving migrants, without the need to think about territory choice or local resource availability. They suggest that early arrival can lead to greater breeding success simply because early birds have more time available to nest again, following nest loss. Within the model they explore the effect on breeding success of varying several important relationships:

  • blog Snipe nest

    This early Snipe nest might get predated but there should be time to try again

    Whether early clutches are more likely to hatch than later ones (seasonal variation in nest survival rates) – such a trend could be created by predation patterns, resource availability and opportunities to conceal nests.

  • Whether one or more replacement clutches is possible within the time available during the breeding season (number of re-nesting attempts).
  • Whether late chicks are less likely to survive and become breeding adults than earlier ones (seasonal variation in recruitment rates) – which would make re-nesting attempts less valuable.

Results

The models developed for the paper showed that, when the chance of losing a breeding attempt does not change during the course of the breeding season, species experiencing intermediate nest survival rates will benefit most from re-nesting. This makes sense; a species that has a very high chance of hatching its chicks will not need to re-nest and one that has a negligible success rate is not going to do much better if it lays more than one clutch.

blog Lapwing

This late-nesting Lapwing may not be able to defend its nest

Nest success may not be constant over the course of a season. Late pairs may find it harder to distract predators if they don’t have the support of other breeding birds, with a consequent drop in success over the summer. Alternatively, species that nests in clumps of grass, such as Snipe, might find it easier to hide their nests later in the season, thereby increasing nesting success over time.

Picking out just a few of the scenarios that are covered in more detail in the paper:

  • When nest survival rates are constant and replacement clutches are possible, early arrival increases the probability of achieving a successful nesting attempt. These benefits of early arrival can be substantial enough to persist even when late-hatched chicks (from replacement nests) are less likely to survive and recruit into adulthood.
  • If there is a seasonal decline in nest survival, late-arriving individuals will have far fewer successful nesting attempts in their lifetime than early-arrivers. In this case, laying replacement clutches only slightly increases the number of successful nesting attempts and the subsequent number of recruits.
  • If there is a seasonal increase in nest survival, early-arriving individuals will tend to lose their first clutches but these individuals have time to re-nest, and are likely to fledge the subsequent attempt. Late-arriving individuals arriving will be more likely to have a successful first attempt and hence the number of successful nesting attempts varies little with arrival date.

The main take-home message of the paper is that, in almost all of the circumstances considered, early arrival can lead to higher breeding success, simply because of the greater time available to lay replacement clutches.

Blog RP migration

What does this mean for waders?

blog Oyc nest

An Oystercatcher does not need much time to ‘build’ a nest

Repeat nesting is a common strategy in waders; a female Oystercatcher, for instance, can quite quickly lay a second clutch if the first clutch is lost. Strategies exist that can lead to a female having more than one successful brood in a season, as seen when a female Dotterel leaves a male to incubate a clutch of eggs and moves on to another male. In most circumstances, however, a pair of waders has time to raise one brood of chicks in a season, by succeeding with the first attempt or taking opportunities to lay replacement clutches if time and resources allow.

It is obvious that, if nesting success is very high, there will be little need to lay a second clutch and if success is really low, little will be achieved by laying more clutches. Waders tend to have intermediate nest-success; most are ground-nesters, making them vulnerable to a wide range of mammalian and avian predators of eggs and chicks. The scenarios modelled in the paper are particularly (but not exclusively) appropriate to breeding waders

blog Knot

Knot – a High Arctic breeder, constrained by a short season

The modelling used in this paper shows that having the time to try again is likely to increase the probability of annual success, as long as the breeding season is long enough. We know that pairs of Ringed Plovers breeding at temperate latitudes have time for several breeding attempts but pairs at high latitudes may have little chance for a second attempt, especially if nest failure occurs late in the incubation period. One way of increasing the time available to breed is to arrive earlier and the benefits of early arrival may be particularly strong for birds that occupy areas where there is a lengthening potential breeding season, something that can be made possible through climate change and warmer springs.

It is not uncommon for a breeding wader to live for five years, ten years – or even longer for larger species (WaderTales blog). During its lifetime, an individual may experience breeding seasons with differing levels of predator activity or other causes of nest loss, such as flooding or trampling, might occur. Although an individual might migrate at the same time each spring, the number of nesting attempts it will be able to fit in during any particular year will depend upon factors such as weather, prey availability and predation pressure.

blog Sanderling

Sanderling with chicks

Nest survival rates in wader populations can show seasonal declines (e.g. Sandercock 1999 – Semipalmated Sandpipers), increases (e.g. Reneerekens et al. 2016 – Sanderling) or little seasonal variation in survival (e.g. Sandercock 1999 – Western Sandpiper), but in all cases there is variability between years. All of these seasonal patterns of survival change were modelled in the Morrison et al paper. In almost every situation, a wader will have a higher chance of successfully rearing youngsters if it (and its mate) are on an early spring migration schedule.

Summary

blog Oyc

This Oystercatcher may regret nesting early! If it fails, it can try again.

Turning up early on breeding grounds in spring can potentially lead to higher reproductive success, solely as a result of the greater time available for laying a replacement clutch. Using modelling, Catriona Morrison and colleagues show that this early-arrival-benefit can be conferred even when later nesting attempts are less likely to produce successful recruits.

Advances in the timing of spring migration are occurring in many species and these findings highlight the potential role of replacement nests as a driver of population increase in those areas where repeat nesting becomes increasingly possible. Professional ornithologists and citizen scientists who study nesting birds (not just waders) are encouraged to do so for the whole season, especially by following marked individuals. Birds that wear geolocators, which can record incubation patterns for nesting attempts that would otherwise remain undetected, may be particularly helpful when trying to discover just how likely birds are to re-nest and with what success.

Only part of the story

Blog tag

Geolocator on Whimbrel

In the long run, the success of an individual bird can be measured by the number of offspring it has in its lifetime and even by the number of its genes that are present in future generations. The number of chicks that fledge each year is only part of the story, therefore. How many of these youngsters recruit to the breeding population? Do they end up breeding in areas where they will have high breeding success? Will their progeny live for a long time and hence have many opportunities to produce their own chicks? Long-term wader studies might reveal some of these answers – eventually.

Paper

blog RP chicks

The aim: a successful brood

The paper was published in Ecology & Evolution.

Why do earlier-arriving migratory birds have better breeding success? Catriona A. Morrison, José A. Alves, Tómas G. Gunnarsson, Böðvar Þórisson and Jennifer A. Gill.

DOI: https://doi.org/10.1002/ece3.5441

The paper is freely available to view.

 


GFA in Iceland

Graham (@grahamfappleton) has studied waders for over 40 years and is currently involved in wader research in the UK and in Iceland.  He was Director of Communications at The British Trust for Ornithology until 2013 and is now a freelance writer and broadcaster.

Whimbrel: time to leave

blog WW-WLGeolocators* have provided fantastic information about the movements of migratory birds – making links between countries, revealing previously unknown stop-over sites and indicating just how quickly birds traverse our planet. A small number of Icelandic Whimbrel have carried geolocators for up to six annual cycles, providing Camilo Carneiro with an opportunity to investigate the annual consistency of egg-laying, autumn departure, arrival in West Africa, departure in the spring, stopover in Western Europe and arrival back in Iceland.

* Geolocators are tiny devices that record the daily positions of birds, by measuring the timing of dawn and dusk. An individual typically carries a geolocator for a year and then needs to be re-caught for the data to be downloaded.

Planning a trip

When booking a train journey on-line, the first question I am asked is whether I want to stipulate departure time or arrival time.  In early spring, with breeding on their minds, you might think that Whimbrel will focus on the time they need to be in Iceland, rather than the time they leave West Africa? If that’s the case then it might be best to take early spring opportunities if they arise, to catch express winds that will make the journey as rapid as possible and to get to Iceland early. Is that the case?

blog mangroves and beach

The Whimbrel is one of several wader species that breed in Iceland. Each autumn, Redshank, Snipe, Golden Plover, Oystercatcher and Black-tailed Godwit fly south to Europe, especially Ireland and the United Kingdom, but many Ringed Plover, most Dunlin and most Whimbrel travel as far as Africa. The main wintering sites for Whimbrel are in West Africa, south of the Sahara, in countries such as Guinea-Bissau. Here they can be seen feeding on crabs on the mangrove-fringed muddy shoreline (above). It’s a very different environment to the inland floodplains of Iceland (below).

blog river plain

In a paper by Tómas Gunnarsson & Gunnar Tómasson in 2011, we learnt that Whimbrel arrival times in Iceland did not change much between 1988 and 2009 (just 0.16 days earlier per year), while timing of arrival was advancing much more in species that travel less far to winter grounds, as you can see in this diagram.

wader arrival Tand G

Changes in first spring arrival dates of six species of waders in southern Iceland from 1988 to 2009 (reproduced from Gunnarsson & Tómasson 2011).

The arrival date for Black-tailed Godwit was advancing fastest (0.81 days per year). In more recent research, it has been shown that the rapidly advancing trend for Black-tailed Godwits is being driven by new recruits to the population – individual adults are not changing their schedules. Why is spring migration getting earlier? summarises a paper by Gill et al in Proceedings of the Royal Society B.

The Whimbrel trend has been recalculated, with a longer run of years, and the new change of 0.03 days earlier per year is not significantly different from zero. Given that Whimbrel are breeding alongside other species that are arriving in Iceland much earlier than thirty years ago, what are the constraints to the timing of their migrations?

Migration timings for Whimbrel

Camilo Carneiro, José Alves and Tómas Gunnarsson from the Universities of Aveiro (Portugal) and Iceland have been studying a population of Whimbrel in Southern Iceland. Birds are caught on the nest in one year and then re-caught in the subsequent year – or two years later if a bird evades capture in the intervening summer. The following results summarise weeks and weeks of patient fieldwork and brush over the hours of frustration caused by wary birds that have been caught before!

blog catching

Over the course of the whole study, 86 Whimbrel were fitted with geolocators, 62 of which were retrieved. Repeatability could be calculated for 16 birds, with between 2 and 7 years of data collected from each individual. The results are summarised in these few bullet points. Please see the paper for confidence intervals and more details about differences between the sexes.

  • Blog tagIndividual timings of autumn departure from Iceland varied between years. The repeatability index is 0.28, with a suggestion of a gender difference (females 0.40, males 0.02). Males tend to look after chicks for a longer period than females so their departure dates may be more strongly influenced by the success of each year’s breeding attempt.
  • Autumn arrival time in West Africa was closely linked to departure time because, on all but one occasion, southward migration was achieved through a single direct flight. See Iceland to Africa non-stop.
  • Spring departure time from West Africa was highly consistent, with a repeatability index of 0.76 and no discernible difference in repeatability between males and females.
  • blog long green grassSpring arrivals in Iceland. Some Whimbrel that managed to complete spring migration in a single flight in some years stopped off in other years. These breaks, perhaps to wait for more helpful wind conditions and/or to refuel, resulted in variability in annual arrival dates for individuals. The repeatability for the two sexes combined was 0.23.
  • Laying date was the least consistent stage of the annual cycle, with a repeatability index of 0.11 and no significant difference between males and females.

In an individual Whimbrel’s annual cycle, there appears to be one fixed point – departure from wintering ground in West Africa. With no discernible seasonality of resource availability on the wintering grounds and little change in day length in these areas, departure dates are probably being determined by an ‘internal clock’. Two major unknowns will then determine what happens in the next twelve months. Will wind and weather conditions be conducive to a one-leg flight to Iceland and how successful will a bird be in any particular breeding season? Unforeseen events, such as having to wait for a delayed partner, losing a first clutch, and the time needed to guard chicks will all affect the timing of autumn migration.

Understanding individuals

blog tag through grassThe study of wader migration has advanced hugely.

  • Fifty years ago, the main measure of migration phenology was the appearance of the first individuals of a species.
  • Colour-ring sightings are ideal for providing repeat arrival dates over the lifetimes of individuals, as exemplified by the Gill et al paper on Black-tailed Godwits, which suggest that individual timing is highly repeatable.
  • Geolocators have provided more detailed information about the precise arrival and departure timings of individuals, which is so important if we wish to conserve threatened, migratory species that visit areas in which data collection was previously virtually impossible.
  • Now, by tracking individual birds for several years, it is possible to look at the variability in annual patterns, and what can cause this variability.

Over the next decade or so, as devices get smaller and remote downloads become easier (eg using GSM tags), it should become possible to understand the conditions that lead to fast, slow and aborted migratory journeys in a whole range of species. Exciting times!

Paper

Why are Whimbrels not advancing their arrival dates into Iceland? Exploring seasonal and sex-specific variation in consistency of individual timing during the annual cycle. Camilo Carneiro, Tómas G Gunnarsson & José A Alves. Frontiers in Ecology & Evolution.

There is more about the information that is obtained from geolocators, how they work and the affects that they have on the individual birds that wear them in these two blogs:

blog roost flock


GFA in Iceland

WaderTales blogs are written by Graham Appleton, to celebrate waders and wader research.  Many of the articles are based on previously published papers, with the aim of making wader science available to a broader audience.

@grahamfappleton

 

 

 

January to June 2019

blog CU postOne or two WaderTales blogs are published each month. The series is UK-based with a global reach. Suggestions of newly-published research on waders that might be of interest to birdwatchers who appreciate waders/shorebirds are welcomed. I am particularly keen to give feedback to colour-ring readers; they provide a huge amount of information that lies at the heart of these stories.

Click on a link in bold to read an individual blog.

You can sign up to receive an e-mail notification when a new blog is published.


GFA in IcelandGraham (@grahamfappleton) has studied waders for over 40 years and is currently involved in wader research in the UK and in Iceland.  He was Director of Communications at The British Trust for Ornithology until 2013 and is now a freelance writer and broadcaster.