Generational change

blog TGG on postIn a changing world, with more chaotic weather patterns and rapidly altering habitats, migratory birds are faced with opportunities and challenges. Long-term monitoring of colour-ringed Black-tailed Godwits, during a period of range expansion and phenological change, has revealed that individuals behave consistently over time but that the behaviour of new generations is moulded by the conditions they encounter.

A changing world 

When trying to explain observed changes in the distributions and annual cycles of migratory birds, there are many things to consider:

  • blog VM y flag

    Colour-rings enable life-time tracking. This bird, caught on its nest, had been ringed as a chick.

    Are individual birds able to take advantage of new breeding and non-breeding sites, as they become available, particularly if other areas become less suitable?

  • Are individuals able to change the timings and patterns of migration?
  • Do individuals adjust their migration routes as a consequence of changes in stop-over or wintering areas?
  • If individuals do not change what they do, how do we explain range expansions and changes in timing of migration?

Put simply, how does climate change lead to changes in distribution of migratory birds? Answering this question is key to being able to predict the rate and direction of future changes, and to assess whether our existing networks of protected sites will continue to support populations in the way that was intended. This issue was tackled by Jennifer Gill, José Alves and Tómas Gunnarsson in their paper “Mechanisms driving phenological and range change in migratory species”, published in Linking behaviour to dynamics of population and communities: applications of novel approaches in behavioural ecology and conservation, a special issue of Philosophical Transactions B (Royal Society).

Potential models

Change could happen in two main ways:

  • Individuals could relocate – having knowledge of a range of available conditions, they can choose to move elsewhere.
  • New generations could settle in new areas (in the breeding season, the non-breeding season or both) and/or adopt new migratory strategies.
blog map

Map that illustrates range expansion

Working out whether change happens through individual movement or generational shifts can only be done by life-long tracking of individuals, in populations in which range change is happening. The Icelandic population of Black-tailed Godwit is ideal for such an investigation. Black-tailed Godwits have been expanding into new breeding areas of Iceland for over 100 years, as discussed in this WaderTales blog. Population growth has been facilitated through warming spring conditions, as discussed in From local warming to range expansion.

blog TGG juvs

Naive youngsters, gathering together before migration

Icelandic Black-tailed Godwits fly south in the autumn, to spend the winter in the British Isles, The Netherlands, Belgium, France, Spain and Portugal. As numbers have grown, winter counts have increased in many areas, with new flocks appearing and expanding on estuaries and areas of wet grassland where the species was previously absent or scarce.

 

Winter distribution

The Wetland Bird Survey shows that there are three times as many Black-tailed Godwits wintering in Great Britain as there were 25 years ago. The biggest changes in numbers have occurred on estuaries in the northwest of England, with the Morecambe Bay winter maximum rising from about 180 to 3200, for instance. Where have these extra birds come from?

blog juvs on Axe

These young birds happen to have ended up on the Axe Estuary in Somerset

Black-tailed Godwits have been ringed in Iceland for nearly twenty years, providing a pool of known-age adults for which natal sites are known. Winter observations of colour-ringed individuals have shown an interesting pattern; birds breeding in newly-colonised areas, particularly in north and east Iceland, are the ones that are more likely to be found in newer winter sites.

In their paper, the authors suggest that birds nesting in these colder areas, where spring comes later, will be fledging quite late and leaving Iceland after adults have departed. With no experienced birds to follow, these young birds may well stop off at the first suitable site, many of which are in the north of the wintering range, and then they return to breed in their natal sites. Birds in Morecambe Bay don’t know that days are longer and the weather is kinder for other birds that travel further south to wintering areas such as Portugal.

blog RS Dee

Wintering birds in Northwest England

Observations from birdwatchers show that the same colour-ringed individuals are nearly always found at the same wintering sites each year. Whatever mechanism is producing this new-breeding-site to new-wintering-site link, it is becoming clear that older birds continue to do what they have always done, with changes in distribution happening as a result of a generational shift.

The annual cycle

Colour-ringed Black-tailed Godwits have been tracked for over 25 years, with a small number of individuals contributing data for the whole of this period. This tracking information can be used to ask how much individuals move around and experience different sites and to assess whether individuals from different generations are using different parts of the range.

Using colour-rings, the Black-tailed Godwit team has discovered that, although individuals can live for over 20 years, in that time they generally use a total of only about four sites between leaving Iceland in late summer and returning in the spring. Basically, individual birds have very limited experience of sites and there is no evidence that they have moved to occupy different sites as, for instance, winter conditions have changed.

blog infographic

Spring arrivals in Iceland

Colour-ring observations have shown that individual birds do not change their breeding or wintering locations and that migrating individuals often appear in the same stop-over sites year after year. The timing of movements is also pretty consistent, especially in the spring. A previous WaderTales blog called Why is spring migration getting earlier? demonstrated that the timing of  migration of individual Black-tailed Godwits varies very little, with observed shifts in the period of migration being driven by young birds returning to Iceland for the first time on average doing so somewhat earlier than previous generations. Once individual birds settle into a timing pattern, they stick to it.

blog LJ arrivals

Black-tailed Godwits, newly arrived in Iceland after crossing the Atlantic

Migration patterns

As discussed above, individual Icelandic Black-tailed Godwits have experience of only a small number of sites, which they use on an annual cycle. When migrating, a bird will generally use the same stop-over site when breaking its journey south, to undertake autumn moult, or on their way north, to take on fat for the trans-Atlantic journey. There is a range of spring migratory strategies in islandica Black-tailed Godwits, as discussed in Overtaking on migration.

blog wwrwOnce established, the annual migratory programmes of individuals rarely change, as illustrated by the map to the right. Colour-ringed Black-tailed Godwit W-WR/W regularly moulted on the Wash, in eastern England, before spending the late winter and spring in northwest England. In the late summer of 2002 he was reported at Slimbridge on 18th and 20th July but back on the Wash on the 25th. Having made the Atlantic crossing and ended up in southwest England, he was able to correct what he may have perceived to be his mistake, returning to the moulting area that he had been using since at least 1996.

Individuals might not change their annual migration routes but we do see changes in numbers on different sites that are used during migratory stop-overs. In a paper published in 2018, Mo Verhoeven and colleagues investigated whether observed changes in migratory patterns of a population of the limosa subspecies of Black-tailed Godwit were caused by individuals altering their strategies or by generational change.

Limosa Black-tailed Godwits leave breeding areas in countries such as The Netherlands in late summer, heading south to either West Africa or Iberia, where they spend the winter. In spring they all gather in staging sites in Portugal and Spain, typically on rice fields. Over the course of less than ten years, the average peak number in Extremadura (Spain) has dropped from about 24,000 to 10,000, while the numbers on the Tagus and Sado estuaries rose from 44,000 to 51,000. These changes took place during a period of rapid population decline, as described in this blog focusing on a paper by Rosemarie Kentie and colleagues.

blog VM Tagus

Limosa Black-tailed Godwits feeding in a rice field in the Tagus estuary

Mo Verhoeven et al have shown that this rapid population-level shift in spring stop-over sites from Spain to Portugal, 300 km further west, was driven by young godwits increasingly using Portugal in the period January to March, instead of Spain. Nearly all of the older birds stuck with the routes they knew. The paper is Generational shift in spring staging site use by a long-distance migratory bird.

Change happens to birds

One thing that is becoming clear in Black-tailed Godwits is that birds are being affected by change – individuals do not have the knowledge or flexibility to effect change. Even in long-lived birds, like Black-tailed Godwits, we see no evidence of individuals altering what they do over what is now two decades, despite the fact that the species’ migration dates, wintering areas and migration routes have all perceptibly changed over the same time period. It’s all about generational change. The behaviour patterns of young birds arise from the conditions they encounter in the first year of life, after which they are repeated.

Details of the Generational Change paper by Gill et al

blog LJ sum plumThe paper at the heart of this blog is: Mechanisms driving phenological and range change in migratory species by Jennifer Gill, José Alves and Tómas Gunnarsson, from the Universities of East Anglia (UK), Aveiro (Portugal) and Iceland. It is published in Linking behaviour to dynamics of population and communities: applications of novel approaches in behavioural ecology and conservation, a special issue of Philosophical Transactions B (Royal Society).

The paper could not have been produced without the help of “thousands of observers of colour-ringed godwits who have made these analyses possible”. This WaderTales blog is a celebration of the work they do: Godwits and Godwiteers.


GFA in Iceland

WaderTales blogs are written by Graham Appleton, to celebrate waders and wader research.  Many of the articles are based on previously published papers, with the aim of making wader science available to a broader audience.

@grahamfappleton

 

Whimbrel: time to leave

blog WW-WLGeolocators* have provided fantastic information about the movements of migratory birds – making links between countries, revealing previously unknown stop-over sites and indicating just how quickly birds traverse our planet. A small number of Icelandic Whimbrel have carried geolocators for up to six annual cycles, providing Camilo Carneiro with an opportunity to investigate the annual consistency of egg-laying, autumn departure, arrival in West Africa, departure in the spring, stopover in Western Europe and arrival back in Iceland.

* Geolocators are tiny devices that record the daily positions of birds, by measuring the timing of dawn and dusk. An individual typically carries a geolocator for a year and then needs to be re-caught for the data to be downloaded.

Planning a trip

When booking a train journey on-line, the first question I am asked is whether I want to stipulate departure time or arrival time.  In early spring, with breeding on their minds, you might think that Whimbrel will focus on the time they need to be in Iceland, rather than the time they leave West Africa? If that’s the case then it might be best to take early spring opportunities if they arise, to catch express winds that will make the journey as rapid as possible and to get to Iceland early. Is that the case?

blog mangroves and beach

The Whimbrel is one of several wader species that breed in Iceland. Each autumn, Redshank, Snipe, Golden Plover, Oystercatcher and Black-tailed Godwit fly south to Europe, especially Ireland and the United Kingdom, but many Ringed Plover, most Dunlin and most Whimbrel travel as far as Africa. The main wintering sites for Whimbrel are in West Africa, south of the Sahara, in countries such as Guinea-Bissau. Here they can be seen feeding on crabs on the mangrove-fringed muddy shoreline (above). It’s a very different environment to the inland floodplains of Iceland (below).

blog river plain

In a paper by Tómas Gunnarsson & Gunnar Tómasson in 2011, we learnt that Whimbrel arrival times in Iceland did not change much between 1988 and 2009 (just 0.16 days earlier per year), while timing of arrival was advancing much more in species that travel less far to winter grounds, as you can see in this diagram.

wader arrival Tand G

Changes in first spring arrival dates of six species of waders in southern Iceland from 1988 to 2009 (reproduced from Gunnarsson & Tómasson 2011).

The arrival date for Black-tailed Godwit was advancing fastest (0.81 days per year). In more recent research, it has been shown that the rapidly advancing trend for Black-tailed Godwits is being driven by new recruits to the population – individual adults are not changing their schedules. Why is spring migration getting earlier? summarises a paper by Gill et al in Proceedings of the Royal Society B.

The Whimbrel trend has been recalculated, with a longer run of years, and the new change of 0.03 days earlier per year is not significantly different from zero. Given that Whimbrel are breeding alongside other species that are arriving in Iceland much earlier than thirty years ago, what are the constraints to the timing of their migrations?

Migration timings for Whimbrel

Camilo Carneiro, José Alves and Tómas Gunnarsson from the Universities of Aveiro (Portugal) and Iceland have been studying a population of Whimbrel in Southern Iceland. Birds are caught on the nest in one year and then re-caught in the subsequent year – or two years later if a bird evades capture in the intervening summer. The following results summarise weeks and weeks of patient fieldwork and brush over the hours of frustration caused by wary birds that have been caught before!

blog catching

Over the course of the whole study, 86 Whimbrel were fitted with geolocators, 62 of which were retrieved. Repeatability could be calculated for 16 birds, with between 2 and 7 years of data collected from each individual. The results are summarised in these few bullet points. Please see the paper for confidence intervals and more details about differences between the sexes.

  • Blog tagIndividual timings of autumn departure from Iceland varied between years. The repeatability index is 0.28, with a suggestion of a gender difference (females 0.40, males 0.02). Males tend to look after chicks for a longer period than females so their departure dates may be more strongly influenced by the success of each year’s breeding attempt.
  • Autumn arrival time in West Africa was closely linked to departure time because, on all but one occasion, southward migration was achieved through a single direct flight. See Iceland to Africa non-stop.
  • Spring departure time from West Africa was highly consistent, with a repeatability index of 0.76 and no discernible difference in repeatability between males and females.
  • blog long green grassSpring arrivals in Iceland. Some Whimbrel that managed to complete spring migration in a single flight in some years stopped off in other years. These breaks, perhaps to wait for more helpful wind conditions and/or to refuel, resulted in variability in annual arrival dates for individuals. The repeatability for the two sexes combined was 0.23.
  • Laying date was the least consistent stage of the annual cycle, with a repeatability index of 0.11 and no significant difference between males and females.

In an individual Whimbrel’s annual cycle, there appears to be one fixed point – departure from wintering ground in West Africa. With no discernible seasonality of resource availability on the wintering grounds and little change in day length in these areas, departure dates are probably being determined by an ‘internal clock’. Two major unknowns will then determine what happens in the next twelve months. Will wind and weather conditions be conducive to a one-leg flight to Iceland and how successful will a bird be in any particular breeding season? Unforeseen events, such as having to wait for a delayed partner, losing a first clutch, and the time needed to guard chicks will all affect the timing of autumn migration.

Understanding individuals

blog tag through grassThe study of wader migration has advanced hugely.

  • Fifty years ago, the main measure of migration phenology was the appearance of the first individuals of a species.
  • Colour-ring sightings are ideal for providing repeat arrival dates over the lifetimes of individuals, as exemplified by the Gill et al paper on Black-tailed Godwits, which suggest that individual timing is highly repeatable.
  • Geolocators have provided more detailed information about the precise arrival and departure timings of individuals, which is so important if we wish to conserve threatened, migratory species that visit areas in which data collection was previously virtually impossible.
  • Now, by tracking individual birds for several years, it is possible to look at the variability in annual patterns, and what can cause this variability.

Over the next decade or so, as devices get smaller and remote downloads become easier (eg using GSM tags), it should become possible to understand the conditions that lead to fast, slow and aborted migratory journeys in a whole range of species. Exciting times!

Paper

Why are Whimbrels not advancing their arrival dates into Iceland? Exploring seasonal and sex-specific variation in consistency of individual timing during the annual cycle. Camilo Carneiro, Tómas G Gunnarsson & José A Alves. Frontiers in Ecology & Evolution.

There is more about the information that is obtained from geolocators, how they work and the affects that they have on the individual birds that wear them in these two blogs:

blog roost flock


GFA in Iceland

WaderTales blogs are written by Graham Appleton, to celebrate waders and wader research.  Many of the articles are based on previously published papers, with the aim of making wader science available to a broader audience.

@grahamfappleton

 

 

 

January to June 2019

blog CU postOne or two WaderTales blogs are published each month. The series is UK-based with a global reach. Suggestions of newly-published research on waders that might be of interest to birdwatchers who appreciate waders/shorebirds are welcomed. I am particularly keen to give feedback to colour-ring readers; they provide a huge amount of information that lies at the heart of these stories.

Click on a link in bold to read an individual blog.

You can sign up to receive an e-mail notification when a new blog is published.


GFA in IcelandGraham (@grahamfappleton) has studied waders for over 40 years and is currently involved in wader research in the UK and in Iceland.  He was Director of Communications at The British Trust for Ornithology until 2013 and is now a freelance writer and broadcaster.

Designing wader landscapes

blog whimbrelMuch has been written about the negative impacts of agriculture on breeding birds – but farming can be good for some species. In Iceland, where high-input agriculture is relatively recent, breeding waders are commonly found in nutrient-rich environments that are associated with increased production. How can high breeding densities of waders be maintained, as farming continues to expand and intensification increases?

In her paper in Agriculture, Ecosystems & Environment Lilja Jóhannesdóttir investigates the distribution of breeding waders across landscapes with varying amounts of highly-cultivated fields and semi-natural areas. She discovers that, in some circumstances and at an appropriate level, adding cultivated land within a broader mosaic of habitats may benefit breeding waders. Is this a model system that provides clues as to how to design landscapes that can support sustainable breeding wader populations in other parts of the world?

The waders of Iceland

table

Breeding populations of waders in Iceland (AEWA report)

Iceland is a hot-spot for breeding waders, holding half or more of Europe’s Dunlin, Golden Plover and Whimbrel, in a country that is a bit smaller then England. The paper at the heart of this blog is written by Lilja Jóhannesdóttir, who worked with colleagues from the University of Iceland, the Agricultural University of Iceland, the University of East Anglia (UK) and the University of Aveiro (Portugal). They investigated how different ways of increasing agricultural productivity might impact upon these species, and others such as Black-tailed Godwit, Redshank and Snipe.

Much of Iceland’s upland interior is not suitable as farmland but there is still plenty of room for agricultural expansion. Only 7% of the area between sea level and an elevation of 200 m is currently under cultivation but it is estimated that it would be possible to increase this to 63% – an eight-fold extensification. Icelandic lowlands currently comprise a fine-scale mosaic of open semi-natural habitats and cultivated fields (primarily for silage production to feed animals), making most of the landscape much more heterogeneous than in countries with a longer history of commercial farming.

blog hay and semi-naturalTwo previous WaderTales blogs have already shown that:

Given that farm production is predicted to increase, that farmers like breeding waders and that some intensively-managed fields can be attractive to waders, is it possible to design farmed landscapes that will work for birds and farmers?

Increasing inputs and reducing heterogeneity

blog nice wetlandGlobally, the expansion and intensification of agriculture has altered landscapes and the associated homogenisation has greatly influenced bird abundance and reduced biodiversity. Populations of numerous species, particularly specialist species, have declined, as agriculture has expanded, while generalist species have often thrived in agricultural habitats.

There is no shortage of examples in which highly intensively managed farmland is shown to be bad for breeding waders. In the monoculture hay-meadows of the Netherlands, Black-tailed Godwit productivity is really low, for instance. These fields have been drained, fertilised and re-sown, in order to create easily-managed carpets of single-species grass that can be cut several times a year. There is more about this in this paper by Roos Kentie.

blog hay fieldAlthough there are some areas of Iceland in which farming is quite intensive, there are many others where farmers have a lighter touch. For instance, nutrient-poor dwarf birch marshes may occasionally be grazed by sheep in the summer but these areas have never received applications of artificial fertiliser. At this end of the intensification continuum, increasing agricultural operations may have benefits for breeding waders. When a patch of rough grazing is ploughed and turned into a hay meadow, the addition of fertilisers can potentially increase soil fertility and create an attractive place for waders to feed. A hay meadow within a local area that is dominated by dwarf birch marsh could effectively increase the heterogeneity (& nutrient-richness via spill-over) of the local area, albeit in an artificial way. In the UK, Golden Plovers breeding on moorland are known to travel up to 7 km to feed on fertilised hayfields with high earthworm densities. This paper by James Pearce-Higgins & Derek Yalden in IBIS provides a nice example of how low intensity agriculture can provide resources for waders in the wider landscape.

Researching waders and landscapes

blog dbmLilja’s work in the Southern Lowlands of Iceland focused upon understanding how agriculture influences breeding wader densities and how these relationships might influence future change. At its heart were counts of adult waders encountered along 200 transects (totalling over 100 kilometres) within semi-natural habitats, visited at several stages during the breeding seasons of 2011 and 2012.

As well as counting birds, Lilja categorised habitats within 500, 1000, 1500 and 2500 metres of the transects, which she called buffer area in the paper. Interestingly, and usefully for later analyses, the distribution of different habitat types is pretty uniform across these scales, in this part of Iceland, with little substantial difference according to elevation. In the diagram below, the 200 transects (a) have been split between those below 50 m above sea level (b) and those higher than 50 m (c).

buffers

Landscape-scale effects

To fulfill the various demands of parents and their offspring, waders need diverse resources on or near their territory. An adult can feed a kilometre or more away from its nest, between incubation bouts, and chicks are mobile from an early age. Tagging has shown that young Black-tailed Godwits can move up to 3 km in the first five days of life, just to give one example. In this open landscape, breeding success is likely to be a function of habitat availability at a broad scale. This is explored in a WaderTales blog about nesting Whimbrel.

blog redshankUsing data collected from these 200 lowland transects, Lilja was able to establish relationships between breeding wader densities and the amount of cultivated land and wetland in the surrounding landscape. These two habitat types were considered because future agricultural expansion is likely to take place on drained wetlands that have high conservation value. In her analyses she assessed the extent to which the amount of cultivated land in the surrounding landscape affects wader densities on semi-natural land, and then considered the potential effects of future agricultural expansion on wader populations. There was substantial variation in the density of all of the six most common wader species recorded on the transects, ranging from 0 to 284 birds/km2.

Lilja found that wader densities in semi-natural habitats were consistently greater when the surrounding landscapes had more wetland, at scales ranging from 500 m to 2500 m, indicating the importance of wetland availability in the local neighbourhood. However, the effects of cultivated land in the surrounding landscape varied with fertility and landscape structure, which was largely defined by altitude.

  • In fertile, low-lying coastal areas (from sea-level to 100 m altitude), wader numbers declined with increasing amounts of cultivated land (and the lowest densities occurred in areas dominated by cultivation). This suggests that further conversion of semi-natural habitats into farmland is likely to severely impact waders in low-lying areas.
  • In less fertile habitats at higher altitudes (between 100 m and 200 m), the lowest densities occurred in areas without cultivated land. This suggests that additional resources provided by cultivated land may have a more positive affect in the less-fertile, higher altitude areas.

blog blackwitThe relationships between the areas of wetland and agriculture in the surrounding landscape and the density of waders vary between species, as you can read in some detail in the paper. A few highlights are:

  • With increasing area of cultivated land, densities of Golden Plover, Dunlin and Whimbrel declined significantly at lower altitudes but increased at higher altitudes. These are the three species that would appear to respond most positively to the addition of pockets of cultivated land within a semi-natural matrix of less fertile land, that tends to be found at higher elevations.
  • Higher amounts of wetland were associated with increased densities of Dunlin and Black-tailed Godwit, but lower densities of Redshank. Golden Plover numbers were unaffected by amount of wetland in the surrounding landscape.
  • Whimbrel densities increased with wetland area, at higher altitudes. Wet patches have been shown to be very important to Whimbrel chicks, as you can read in this WaderTales blog about research in Shetland.
  • At lower altitudes, Snipe densities increased with the amount of wetland area in the local vicinity. This relationship was less pronounced at higher altitudes, which tend to be less effectively drained and hence generally wetter.

dunlin graphic

What now?

Changes in Icelandic landscapes are to be expected in the coming years, as most farmers intend to increase their areas of cultivated land. This expansion will inevitably have impacts upon the internationally important breeding wader populations of Iceland but the level of such impact will depend on where the expansion will occur. This paper shows that increases in the area of cultivated land at lower altitudes in Southern Iceland are more likely to result in declines in wader density than in less fertile areas, when tend to occur at slightly higher altitudes (still under 200 m above sea level). An important next step will be to identify the landscape structures and scales of management that can continue to support high densities of breeding waders.

blog coastal wetlandGiven the international importance of Iceland as a home for breeding waders it would be nice to think that this paper can be used to develop national land management policies that can prevent the unintended loss of species such as Golden Plover and Snipe, which landowners value and wish to preserve. At the farm and community level, the paper highlights the key importance of maintaining the complex and heterogeneous landscapes of lowland Iceland, retaining as many as possible of the remaining wetland patches and pockets of semi-natural land within even the most intensive of farming areas.

The paper may well be of interest to conservationists who are struggling to reverse wader declines in other parts of the world. In Southern Iceland, where 7% of the land is being farmed relatively intensively within a fine scale mosaic of both wet and dry semi-natural habitats, it is possible to support hundreds of waders per square km across the wider countryside. Can this situation be replicated across large tracts of land in other countries?

Take home message and paper

blog heterogeneousThis paper provides a useful reminder that the links between land use changes and biodiversity implications can be highly context-dependent. Further agricultural conversion of wetlands and rough grazing areas in the fertile low-lying areas of Iceland is likely to be detrimental for breeding waders, but such effects may be less apparent in less fertile, higher altitude areas. Here, the conversion of some land from rough-grazing to hay meadows may provide feeding opportunities off-territory for Dunlin, Golden Plover and Whimbrel. The scale at which the addition of cultivated areas is beneficial to breeding waders has yet to be determined.

This paper is published as:

Interacting effects of agriculture and landscape on breeding wader populations. Lilja Jóhannesdóttir, Jennifer A. Gill, José A. Alves, Sigmundur H. Brink, Ólafur Arnalds, Verónica Méndez and Tómas Grétar Gunnarsson https://doi.org/10.1016/j.agee.2018.11.024

blog end banner

 


GFA in Iceland

Graham (@grahamfappleton) has studied waders for over 40 years and is currently involved in wader research in the UK and in Iceland.  He was Director of Communications at The British Trust for Ornithology until 2013 and is now a freelance writer and broadcaster.

 

Iceland to Africa, non-stop

blog tagRinging had already suggested that Whimbrel might fly non-stop from Iceland to western Africa (see “Whimbrels on the move”). By using geolocators, Camilo Carneiro and his colleagues from the Universities of Iceland and Aveiro (Portugal) have now shown that this is the norm – and reveal just how quickly they get there.  In the paper reporting on this work, they contrast this rapid autumn movement with what happens on the return journey in spring.

Migratory journeys

European Whimbrel are made up of two distinct populations which mix in the wintering grounds. Three-quarters of the estimated total of 400,000 pairs breed in Iceland, with the rest breeding from Scandinavia through to Russia. In the autumn, most of the Icelandic birds fly straight to Africa. In the late summer and early autumn, the vast majority of birds seen in the UK and other European countries on the East-Atlantic Flyway are of continental (rather than Icelandic) origin. Most will continue their migrations to Africa.

Camilo Carneiro’s paper focuses on the Icelandic population. Although the breeding locations of the birds in the study all fell within a circle of radius 5 km, the wintering area represents about 1500 km of the coastal strip of western Africa and its off-shore islands. This includes Sierra Leone, Guinea-Conakry, Guinea-Bissau, Senegal, The Gambia, Mauritania and Morocco, with the highest density of the locations in Guinea-Conakry and Guinea-Bissau. On spring migration, although some manage a similar non-stop flight, most birds stopped off on their way back to Iceland. The largest number paused in Ireland, with others visiting western Britain, northwest France and Portugal. Marked birds flew an average of 6079 km in autumn and 6450 km in spring.

blog graphic

A sense of urgency

Most studies show that birds migrate faster in spring than in autumn, something that may be associated with a need to get to breeding sites as quickly as possible. Potentially, this enables them to take advantage of the short window in which to find a partner, lay and hatch eggs, look after chicks and fatten up for the return journey. Why is autumn migration quicker for Whimbrel that breed in Iceland and spend the winter in countries such as Guinea-Bissau?

blog tag postCamilo Carneiro and his colleagues have been studying the migrations of individual Whimbrels using geolocators. These small devices, attached to leg-rings, record the times of dawn and dusk for twelve months. When (or if!) an individual can be caught again in the subsequent breeding season, the geolocator can be removed and the data down-loaded, revealing a year’s worth of movements. One of the fascinating things about this study is that there are 56 migrations from 19 individuals; meaning that there are several birds for which repeat information has been collected. There’s a WaderTales blog about geolocators here (Are there costs to wearing a geolocator?)

The tags used on these Whimbrels did not just measure light levels, they also recorded temperature and whether the tag was wet or dry. These extra data helped to establish more precisely the periods in which birds were on migration, as air temperature is lower at higher altitudes and tags can only record wetness if birds are standing in water. Please see the paper and supporting materials for details of the methodology. Given that birds cannot fly without fuel, account is taken of the time taken to fatten up for migration, when estimating the whole migratory period.

blog banner africa

Wintering Whimbrel in Guinea-Bissau

Results

The paper by Camilo Carneiro in the Journal of Avian Biology provides details about the wintering and staging location of Icelandic Whimbrel but the main focus is on speed of migration. This was calculated as the ground distance travelled divided by migration duration, where this period includes fuelling time.

  • blog flightAll birds flew directly from Iceland to the wintering sites (30 autumn migrations from 19 individuals), a journey of four or five days.
  • Males departed earlier than females in spring and made a stopover in 83% of the cases (15 out of 18 individuals), while females stopped on 75% occasions (6 out of 8).
  • Migration duration (fuelling plus flight times combined) was significantly different between seasons, being 59.2 ± 6 days in autumn and 65.5 ± 6.2 days in spring, with no apparent differences between sexes.
  • Migration speed and ground speed were higher in autumn than in spring (migration speed: 102.6 ± 2.2 kmd-1 in autumn and 98.6 ± 5.3 kmd-1 in spring; ground speed: 16.50 ± 5.99 ms-1 in autumn and 13.07 ± 5.82 ms-1 in spring), with no differences between sexes.
blog tag in grass

Catching an individual Whimbrel, in order to remove its geolocator, becomes harder every year. A range of methods is used to catch birds on their nests.

With only a small sample, the following reported results were not statistically significant:

  • On average, males departed later than females on autumn migration. This makes sense, as males stay with their chicks longer than females.
  • In spring, males arrived into Iceland on average 2 days before females.

Explaining the patterns

The discussion section of the paper provides a fascinating review of some of the theories relating to migration physiology – it’s well worth a read. This is just a quick summary.

Autumn migration seems relatively straightforward; every tracked Whimbrel took a direct flight from Iceland to Africa. For Whimbrel migrating to Iceland from western Africa in spring, however, there seems to be a relatively small chance of being able to fly all the way in one hop (5 out of 26 northward flights were direct). The authors suggest that:

  • blog mangrove

    Whimbrel roosting in the top of mangroves at high tide

    When leaving Iceland at the end of the summer, Whimbrel are heading towards predictable resources which will be similar from week to week. Timing of departure is not critical and birds may be able to wait for helpful weather patterns.

  • On the journey south, wind conditions are generally more favourable than on the journey north, reducing the duration of direct flight.
  • Some birds may have sufficient resources for the northward flight, if weather conditions are helpful, but choose to stop off in western Europe (particularly Ireland) if the fuel gauge suggests that they might not be able to complete the crossing.
  • It is possible that the relatively recent addition of West African Bloody Cockles to the Whimbrel’s diet, in the Banc d’Arguin, may have improved the species’ capacity to fatten up quickly, increasing the possibility of a one-flight trip north.
  • Staging areas in western Europe, particularly Ireland, may provide relatively predictable resources that can be used to top-up reserves for the final 1500 km crossing of the Atlantic in spring. By using a stop-over, it may be possible to take on extra reserves that can be used in the early part of the breeding season.
  • There may be a stronger link between weather patterns in western Europe and Iceland than between western Africa and Iceland. Whimbrel that stop off in Ireland, or other countries on the Atlantic seaboard, may then depart in weather systems that are also associated with warmers spring conditions in Iceland.

blog no ringThere are many questions still to be answered but one thing is certain; as it says in the title of the paper, when the migration of the Icelandic Whimbrel is studied in detail, it is clear that there is faster migration in autumn than in spring. Here’s a link to the paper:

Faster migration in autumn than in spring: seasonal migration patterns and non‐breeding distribution of Icelandic Whimbrels Numenius phaeopus islandicus Camilo Carneiro, Tómas G. Gunnarsson & José A. Alves Journal of Avian Biology 10.1111/jav.01938

More about migration

Migrating birds make ‘decisions’ on timing and staging each year that can affect their personal survival and the chance of successfully raising young. Are these ‘strategies’ just the consequences of the circumstances that arise in a particular season? As scientists gather longer runs of tracking data on individuals, and can relate these to wind and weather patterns, it may be possible to gain a better understanding of the drivers of migratory patterns.

The team behind this paper (Camilo Carneiro, Tómas Gunnarsson & José Alves) have produced a number of complementary papers on wader migration, some of which have been covered in previous blogs:

WaderTales: Overtaking on Migration.  Alves, J. A., Gunnarsson, T. G., Potts, P. M., Gélinaud, G., Sutherland, W. J. and Gill, J. A. 2012. Overtaking on migration: does longer distance migration always incur a penalty? – Oikos 121: 464–470.

IBIS/BOU: Risking it all in a direct flight.  Alves, J. A., Dias, M. P., Méndez, V., Katrínardóttir, B. and Gunnarsson, T. G. 2016. Very rapid long-distance sea crossing by a migratory bird. – Sci. Rep. 6: 38154.

Gunnarsson, T. G. and Tómasson, G. 2011. Flexibility in spring arrival of migratory birds at northern latitudes under rapid temperature changes. – Bird Study 58: 1–12.

WaderTales: Whimbrels on the move.  Gunnarsson, T. G. and Guðmundsson, G. A. 2016. Migration and non-breeding distribution of Icelandic Whimbrels Numenius phaeopus islandicus as revealed by ringing recoveries. – Wader Study 123: 44–48.

WaderTales: Black-tailed Godwit pairs – the importance of synchrony.  Gunnarsson, T. G., Gill, J. A., Sigurbjornsson, T. and Sutherland, W. J. 2004. Arrival synchrony in migratory birds. – Nature 413: 646.

blog Iceland banner

The southern lowlands of Iceland (breeding grounds of Whimbrel) seen from Þríhyrningur

 


GFA in Iceland

Graham (@grahamfappleton) has studied waders for over 40 years and is currently involved in wader research in the UK and in Iceland.  He was Director of Communications at The British Trust for Ornithology until 2013 and is now a freelance writer and broadcaster.

 

 

 

Starting moult early

In waders (shorebirds), the main moult (molt) usually takes place after the migration that follows the breeding season. Golden Plovers adopt a different strategy, starting wing moult while still nesting. Given that these adult birds are not going to fly anywhere any time soon, this seems like a very efficient strategy. So, why do Icelandic and Scandinavian Golden Plovers moult differently? Is this a reflection of available resources?

The post-breeding moult

MOULT CYCLEMoult is an energetic process, especially the post-breeding moult, which includes a change of all of the wing and tail feathers. To complete the whole process, birds ideally need to find a three-month period when resources are good, climatic conditions are benign and there is no need to migrate. For birds on the East Atlantic Flyway that spend the non-breeding season in Europe, moult typically takes place after the breeding season and before days get shorter and the weather gets colder.

One place with plenty of food-rich mud is the Wash, in eastern England. Here, up to 300,000 waders gather each autumn, including Knot from Greenland and Canada, Grey Plover from Siberia and Curlew from countries such as Finland. A relatively small proportion are juveniles, which will only moult their body feathers, but there are probably at least 200,000 waders in full moult at this time of year – dropping and growing a grand total of perhaps a billion feathers between them. Some populations use the Wash as a feeding station, before moving on to moult in their wintering grounds, but this is a minority. This group includes taymyrensis Bar-tailed Godwits (more about these birds here) and schinzii Dunlin, which will travel further south, to Africa.

wing moult

Golden Plovers start their moult during or before the incubation period

There are Golden Plovers spread across the autumn mud-flats of the Wash too, made up of a mixture of birds that have bred in Britain, Europe, Scandinavia and Iceland. Although they end up in the same winter flocks, their moult strategies are different. Recent research by Paula Machín and colleagues has focused upon how breeding season conditions impact upon the moult strategy of two distinct Golden Plover populations, birds breeding in Scandinavia and Northern Russia and others breeding in Iceland. The resulting paper is published in the Journal of Avian Biology.

Conditions at the breeding grounds and migration strategy shape different moult patterns of two populations of Eurasian golden plover Pluvialis apricaria Paula Machín, Magdalena Remisiewicz, Juan Fernández-Elipe, Joop Jukema & Raymond H.G. Klaassen

Icelandic Golden Plovers

scopeUp to one million Golden Plovers arrive in Iceland each spring, mainly from Ireland and western parts of the United Kingdom. This is estimated to be nearly half of the European breeding population. Iceland might seem small, when compared to the vast land-mass of the European continent, but it’s a haven for waders. This status is threatened by the spread and intensification of lowland farming, increased afforestation and by the ‘summer cottage’ industry – but those are stories for another day.

eggsThe Heiðlóa (Golden Plover) is a welcome sight and sound at the end of the Icelandic winter. The first migrants appear about 23 March and nesting can commence as early as 26 April. The usual clutch size is four eggs, with both parents sharing incubation duties. Some first nests are lost, due to predation, but females can lay another clutch. Joop Jukema studied Golden Plovers nesting near Selfoss in the Southern Lowlands of Iceland, timing his captures of nesting birds to coincide with the later part of the incubation period. He was able to assess the progress of moult by scoring the growth of the primary feathers and to work out when each bird would have dropped its first primary. The estimated mean start date of primary moult for males was 19 May (95% confidence interval 27 April – 10 June) with females starting an average of 9 days later, on 28 May (95% confidence interval 6 May – 19 June). On average, males started to moult their primary feathers nine days before the start of incubation, while females started to moult at the same time as incubation began. Potentially, hormone changes associated with the stage of the breeding season could be linked to the onset of moult.

moult graphic

Icelandic Golden Plovers complete their moult prior to departure from the country. By making catches of birds in late August and early September, it was possible to show that the primary moult period is about 100 days. No birds were caught in suspended moult, strongly suggesting that Icelandic Golden Plovers do not attempt to cross the Atlantic before they have attained a complete, fresh set of feathers.

Swedish Golden Plovers

Paula Machín’s main study site was in Ammarnäs in Sweden, on roughly the same latitude as Selfoss and hence with the same amount of daylight. Ammarnäs is colder in spring than Selfoss, not benefiting from the warmer waters of the Gulf Stream which wash the shores of southern Iceland. The average start of incubation in Ammarnäs was eight days later than in Selfoss with the commencement of moult being seventeen days later. Males started primary moult three days after the start of incubation, with females starting twelve days into incubation. It is interesting to note that the difference in timing of the two sexes is nine days, just as in Iceland.

chickFemale Golden Plovers left the Ammarnäs breeding territories at the end of July. From observations of females caught on their nests, it seemed likely that individual females were not starting the moult of their outer primaries, typically completing the moult of primary four and not dropping primary five. Males stayed with chicks for an extra fortnight. Given the longer period of time available to males, it is likely that they were able to moult more primary feathers than their partners, prior to departure from the area.

Catching birds during the chick-guarding phase or just before migration is very difficult but Raymond Klasssen and colleagues were able to study birds on similar strategies by catching birds at Lund, in southern Sweden, and in the Netherlands. Here, birds from Swedish breeding areas and further afield gather to moult, recommencing primary moult at the point at which it had been suspended. Inspecting moulting birds in the period August through to November enabled the research team to monitor the second part of the moult of Continental birds. Given that the distance between breeding areas and these staging areas is relatively short and that tracking showed that it could be completed in one or two days, it is possible that adults might be able to migrate while in active moult.

Spot the difference

measuringOverlapping the breeding and moulting period is rare in migratory birds but it makes sense in a time-constrained annual cycle. The research team suggest that Icelandic plovers presumably need to initiate moult early in the season, in order to be able to complete it at the breeding grounds. This is not an option for Continental plovers, as their breeding season is much shorter, due to a harsher climate and an earlier drop-off in the number of arthropods, their main food source. These Golden Plovers cannot delay the start of the moult period until after the autumn migration because there is insufficient time to compete a full moult in areas such as Lund or the Netherlands, prior to the onset of winter frosts. The fact that Golden Plover are largely associated with farmland, rather than estuarine sites, may make them more susceptible to sub-zero temperatures than, for instance Grey Plover.

When incubating and looking after chicks, Icelandic and Swedish Golden Plovers were able to moult at the same rate. However, there were differences in the second part of the primary moult season. Away from their territories, Icelandic birds continued to moult at the same rate as previously but, having moved to Lund or the Netherlands, Continental birds could moult twice as fast as before. The availability of earthworms in these staging areas may make it easier to acquire resources for the energetically-expensive moult process.

TGG flying

Despite the faster rate of moult of Continental birds in the later period of their moult, the total period of primary moult is longer than that of Icelandic birds. Birds completing their moult in Iceland took an average of 100 days to replace their primaries, whilst Swedish-breeding birds took 16 days longer. This difference may be associated with the time taken to complete the first stage of moult, prior to the migratory flight away from the breeding sites.

alarmA key finding of this paper is that splitting the moult period extends the total period of primary moult. For Swedish breeders, this is the best option, however, as there is insufficient time to complete autumn moult close to the breeding grounds or after the breeding season. As the authors conclude, “Meeting the energy demands of breeding, moult, and migration calls for different timing and spacing of these events in their annual cycle, adjusted to conditions at their breeding and stopover sites, and to their migration strategy.”

There’s more from Paula Machín and her colleagues on this blog-site: https://overthetreeline.wordpress.com/

More moult

There are more WaderTales blogs about moult: 

  • The not-so Grey Plover includes general information about wader moult and talks about some of the stresses that may occur.
  • Lapwings can moult while on migration. Read more in Lapwing Moult, which also talks about how to study moult without catching birds.
  • Bar-tailed Godwit; migration and survival mentions the different strategies of two subspecies of Bar-tailed Godwit, both of which can be found on the Wash in autumn.

I look forward to future papers about moult strategies to add to WaderTales. Here’s a list of the 60+ blogs that are already available: https://wadertales.wordpress.com/about/

ugo banner


GFA in Iceland

Graham (@grahamfappleton) has studied waders for over 40 years and is currently involved in wader research in the UK and in Iceland.  He was Director of Communications at The British Trust for Ornithology until 2013 and is now a freelance writer and broadcaster.

 

 

Mission Impossible? Counting Iceland’s wintering Oystercatchers

If Norwegian Oystercatchers migrate south and west for the winter, how is it that thousands of Oystercatchers can adopt a stay-at-home strategy in Iceland, which lies at a higher latitude than most of Norway?

Braving the cold

As part of a project to try to understand why some Oystercatchers spend the winter in Iceland, when most fly south across the Atlantic, researchers needed to count the ones that remain. Unlike in the UK, where the Wetland Bird Survey can rely on over 3000 volunteers to make monthly counts of waders and waterfowl, it’s tough to organise coordinated counts of waders in Iceland. Winter weather, a small pool of birdwatchers and short days don’t help when you are trying to cover the coastline of a country the size of England.

blog wading

Up until 2016, the only winter wader data in Iceland came from Christmas Bird Counts, first run in 1956. These coordinated counts suggested that most Oystercatchers were to be found in southwest and west Iceland, which is also where most birdwatchers live, but with smaller numbers in areas such as the southeast. The maximum number of Oystercatchers found in any one year was 4466 birds but this excluded known wintering sites which were inaccessible or very hard to access. Some contributors to Christmas bird counts live in areas away from the well-populated west of the country, and they provided evidence that there were no Oystercatchers in the north, for instance. This information gave some guidance as to where to look for Oystercatcher flocks but could a small team of researchers and birdwatchers do a complete count of the resident component of the species in the middle of winter?

Blog snowy

 

Part one of the survey involved a group of well-prepared birdwatchers and researchers spending several days counting Oystercatchers in as many areas as possible of the southeast and in the whole of the west, from the southwest tip of Iceland (where Keflavik airport is situated) through to known wintering locations in the northwest fjords. The north and south coasts could largely be discounted; the north is too cold and the south coast is very barren.

Part two of the survey was carried out by air, allowing the addition of counts of the islands and inaccessible coastal sites in the Breiðafjörður Bay, as well as some key sites in Faxaflói Bay (see map). Flocks of roosting Oystercatchers were usually seen from afar and photographs were used to make counts without flushing the birds.

blog counts

Survey results

The ground-based wader surveys were carried out between 28 January and 3 February 2017 and the aerial survey took place on 16 February. In total, 11,141 Oystercatchers were counted, which nearly triples the previous Christmas total. As expected, the vast majority of Oystercatchers were found on wintering sites in SW and W Iceland. Large numbers of birds were found on sites not covered by the Christmas counts, particularly on the north side of Faxaflói Bay and during the aerial survey over Breiðafjörður Bay.

blog BoddiThe full results of the paper are presented in a new paper in the BTO journal Bird Study. (Click on title for link)

Population size of Oystercatchers Haematopus ostralegus wintering in Iceland Böðvar Þórisson, Verónica Méndez , José A. Alves, Jennifer A. Gill , Kristinn H. Skarphéðinsson, Svenja N.V. Auhage, Sölvi R. Vignisson, Guðmundur Ö. Benediktsson, Brynjúlfur Brynjólfsson, Cristian Gallo, Hafdís Sturlaugsdóttir, Páll Leifsson & Tómas G. Gunnarsson.

Resident or migrant? 

One of the key questions that researchers wanted to answer was ‘what proportion of the Icelandic breeding population is migratory?’ This is part of a bigger project exploring the causes and consequences of individual migratory strategies, as you can read in the previous WaderTales blog: Migratory decisions for Icelandic Oystercatchers. This project is a joint initiative by the universities of Iceland, East Anglia and Aveiro, led by Verónica Méndez.

blog familyIn order to estimate the proportion of migrants and residents it was necessary first to determine the total size of the Icelandic Oystercatcher population, based on a recent estimate of 13 thousand breeding pairs (Skarphéðinsson et al. 2016) . How many sub-adults are there to add to the 26,000 breeding birds?

Verónica Méndez and her team have shown that Oystercatchers fledge on average about 0.5 chicks per pair. Using estimates that 50% of these chicks are alive by mid-winter, that there is then a 90% chance of annual survival and birds typically breed when they are four years old, it was possible to come up with a total population of just over 37,000 birds.

Although the authors of the paper have produced the best winter estimate thus far, they note that it is a minimum – there could be small numbers of birds in other areas. At 11,141 out of 37,177 birds, the minimum estimate of the residential part of the population is 30%, leaving 70% to be distributed around the coasts of the British Isles and (in smaller numbers) along the coastline of mainland Europe.

Latitudinal expectation 

blog ringed birdTo put the migratory status of the Icelandic Oystercatcher into context with other Oystercatcher populations breeding in NW Europe, the authors collated information about the proportion of resident and migratory Oystercatchers in coastal countries between Norway and the Netherlands. They show that there is a strong latitudinal decline in residency. From Northern Norway (69.6°N) to Southern Sweden (57.7°N), where mean January temperatures are typically in the range of -1 to -4°C, only occasional individuals are found in winter, whereas populations in Denmark (55.4°N), where mean January temperatures 0.8°C, and sites that are further south and warmer mostly comprise resident individuals.

blog scenicThis cline in migratory tendency is also seen within the British Isles, which stretch from 60.8°N to 50.2°N. Writing in the BTO’s Migration Atlas, Humphrey Sitters reports that birds from the north of the British Isles have a median recovery distance of 213.5 km, whereas in the west, east, south and Ireland the respective figures are 35.5, 27.0, 6.0 and 13.5 km. In each group, there are birds that travel over 800 km, implying some degree of migratory tendency in birds breeding in every part of the British Isles.

Iceland lies between 63.2°N and 66.3°N, which puts it well within the latitudinal range of the ‘almost-all-migrate’ group of Scandinavian birds. The Icelandic proportion of 30% residency is likely to be a function of the temperature and geographical isolation of the island. Bathed by the relatively warm waters of the Gulf Stream, some coastal areas, particularly in the west of Iceland, provide a relatively mild oceanic climate and apparently ample food stocks to support high survival during most winters. On the other hand, days are very short. For an Oystercatcher that spends December in Reykjavik, the time between sunrise and sunset is just four hours and the average January temperature is -0.6°C. For a bird in Dublin day-length figure is almost twice as long, at seven and a half hours, and temperature is 5.3°C. Food availability may well be compromised by the time available to collect it, as previous studies have shown that feeding efficiency is on average lower at night.

blog of other wadertalesIceland might hold a higher proportion of residents than would otherwise be the case as it is far enough away from Britain (about 750 km to mainland Scotland) and Ireland for the sea crossing to potentially be a significant barrier. For migrants, time will need to be spent acquiring the reserves needed for the journey south in the autumn and north in the spring and the flights may well add costs in terms of survival probability.

There is a blog about the broader project to understand how individual birds become ‘programmed’ to be migrants or residents here: Migratory decisions for Icelandic Oystercatchers.

The migration option 

blog sightingsIf 30% of Oystercatchers are staying in Iceland this implies that up to 26,000 birds of Icelandic origin are to be found in the British Isles and on the western coast of Europe during the winter. Some of these – young birds that are yet to breed – can be found in these areas in the summer too. By the end of the summer of 2017, Verónica Méndez and her team had colour-ringed about 800 (500 adults, 300 juvenile) birds in Iceland, in order to try better to understand the reasons for the migratory/residency decisions that individuals make. Every dot on the map alongside (which was created on 1st June 2018) represents a migratory bird. Each record is valuable and there are lots more birds to try to find! Are there really no Icelandic Oystercatchers in the vast flocks of eastern England?

If you come across a colour-marked Oystercatcher, please report it to icelandwader@gmail.com 

blog bottom

 


GFA in Iceland

Graham (@grahamfappleton) has studied waders for over 40 years and is currently involved in wader research in the UK and in Iceland.  He was Director of Communications at The British Trust for Ornithology until 2013 and is now a freelance writer and broadcaster.

 

 

 

 

Just one Black-tailed Godwit

When you receive a list of sightings of a colour-ringed bird that you have reported to a scheme organiser, it can hide a wealth of information. Here’s one such bird.

Blue Red – Yellow Green-flag

blog karen

BR-YGf photographed in Caithness (north of Scotland) in the spring of 2017

There are some colour-ringed Black-tailed Godwits that have generated two hundred or more sightings at well-watched locations but BR-YGf is more typical. When seen in Cambridgeshire on 26 March 2018, that was only the 12th observation in the database. (There’s an update from Essex at the end of this story).

The Black-tailed Godwit that was soon to become BR-YGf was wintering in Portugal when caught in a mist net, by José Alves and a team of other ringers, just before dawn on 25 October 2014. It was given a unique set of three colour-rings and a flag, that would enable it to be identified in the field by birdwatchers. Measurements of wing length and bill length, taken at the time, meant that it could be identified as a male, using criteria described in this paper in Bird Study.

blog ringers

Wader-ringing team in Portugal

Colour-ringing of Black-tailed Godwits started in Portugal in 2006, when José was working on a PhD at the University of East Anglia, in which he studied the ecology of Black-tailed Godwits wintering on the Tagus and Sado Estuaries of Portugal. Colour-ringing has continued since, contributing to coordinated studies of Icelandic Black-tailed Godwits in Spain, Portugal, France, the UK, Ireland and, of course, Iceland.

Breeding in Iceland

Almost all of the islandica Black-tailed Godwits breed in Iceland, with small numbers on the Faeroes, a handful on the Lofoten Islands of Norway and an occasional breeding pair on a Scottish island. Jenny Gill and I saw BR-YGf in the west of Iceland in April 2016, as we checked for marked birds in a flock of 1100 birds, many of which were new arrivals. He was feeding in a newly-ploughed cereal field, that had been previously spread with pig-muck from the neighbouring industrial-scale piggery. We managed to look at 800 pairs of legs in that flock; there was another green-flagged bird from Portugal, two orange-flags from France, a bird from Ireland and three from England.

Blog sightings

The history of BR-YGf since he started wearing coloured rings in 2014

We have been checking flocks of Black-tailed Godwits arriving in Iceland for many years. One of the most significant recent outputs is a paper that explains that young birds, recruiting into the population, are driving the advancing arrival of the species into Iceland in spring. The results are summarised in this blog: Why is spring migration getting earlier?

Autumn moult

Most of the Icelandic Black-tailed Godwits that winter in Portugal stop off to moult en route in autumn. We see some of these birds in the UK but BR-YGf is one that, from the sightings in September 2016, probably moults into winter plumage in France. Moulting is an energetically expensive process; birds that are mid-moult don’t usually migrate so these autumn staging sites are very important to the flocks that use them. When first caught in Portugal, in late October 2014, BR-YGf was in full winter plumage, probably having recently arrived from France.

Spring overtake

blog samouco

The Samouco salt-pans, where BR-YGf was ringed, with Lisbon in the background

Portugal is a warm place to spend the winter, with relatively long days and plenty of food – very different to the east coast of England, for instance. The only down-side is that Portugal is a long way from Iceland, which you might think leads to later return in the spring. Most Portuguese birds get around this problem by migrating in two legs, the first of which takes them to either the Netherlands or the British Isles. BR-YGf chooses the British option. This blog explains this migratory strategy: Overtaking on migration.

BR-YGf has been spotted in two springs since ringing. On 14 March 2016 he was seen at Old Hall Marshes in Essex by Steve Hunting and on 26 March 2018 he was seen by the Project Godwit team on the Nene Washes in Cambridgeshire. Mark Whiffin and colleagues were looking for limosa subspecies godwits, newly returned from Africa to breed, but their birds were outnumbered by large flocks of islandica, fattening up for the trip north. There’s more about the differences between the two subspecies in Godwits in, godwits out: springtime on the Washes with some hints on distinguishing which subspecies is which.

Portuguese birds, on an earlier migratory schedule, tend to be further ahead, in terms of moult, standing out in their red finery against the greyer local birds, some of which will travel to Iceland up to four weeks later. You can read more about the spring moult in this WaderTales blog: Spring moult in Black-tailed Godwits. Did you know that waders smell different in summer plumage?

Why Caithness?

BR-YGf has been following a well-used migration route: breed in Iceland, moult in France, winter in Portugal, spring in England, back to Iceland and repeat, for perhaps twenty or more years. What was he doing in Caithness, in the very far north of Scotland on 22 April 2017?

blog map

Although the average timing of arrival of individual godwits in Iceland has not changed, the small amount of annual variation in their timings may be related to the weather they encounter en route. In the spring of 2017, we were in Iceland waiting for birds to turn up. The weather was lovely – if cold – but northerly winds appeared to bring a brief halt to most migration. In our two-week stay we saw only 28 colour-ringed Black-tailed Godwits; not quite as bad as the spring of 2013, when winter returned to Europe in April, but close.

On 22 April 2017, BR-YGf was in a flock of Black-tailed Godwits that took a break from their northwards migration at St John’s Pool in Caithness, on the north coast of Scotland. Here it was photographed by Karen Munro.

blog cr counts

In some years, Black-tailed Godwits, and other waders making the trip to Iceland, may get part way across the Atlantic and have to turn back or they may reach the north of Scotland or the Western Isles and stop. Colour-ring sightings alert colour-ring coordinators to these events, as presented in the blog: Waiting for the wind.

Thank you

blog moita

Looking for Black-tailed Godwits in Moita (Portugal) – José Alves, Jenny Gill and me

Thousands of birdwatchers have contributed to the studies of Icelandic Black-tailed Godwits. Every sighting is valuable, especially repeat records from the same site. This WaderTales blog tells the stories of some of the birdwatchers who contribute their sightings to these projects: Godwits and Godwiteers.

It’s great to see old friends, when out ‘godwitting’. Jenny Gill and I have seen BR-YGf in Portugal (2016 & 2017) and in Iceland (2016). We recognised him but he probably will not have recognised us.

Please report any colour-ringed Black-tailed Godwits to j.gill@uea.ac.uk and she will forward them to the appropriate coordinator as necessary. Thank you!

Update

BR-YGf spent at least 12 days in Alresford Creek, on the Colne Estuary, in Essex in April 2019.


 GFA in Iceland

WaderTales blogs are written by Graham Appleton, to celebrate waders and wader research.  Many of the articles are based on previously published papers, with the aim of making wader science available to a broader audience.

@grahamfappleton

 

Farming for waders in Iceland

Across the world, agriculture is one of the primary threats to biodiversity, as we tear up natural environments to create more space to feed an ever-growing and increasingly meat-hungry human population. Agricultural land can, however, also provide key resources for many species whose behaviours align with the rhythms of the farming year.

blog cows

In Iceland, farming areas support large and important populations of several wader species, including 75% of Europe’s Whimbrel and over half of Europe’s Dunlin. As the country welcomes more tourists and expands the range of crops grown for food and fuel, what might be the implications for iconic species such as Whimbrel, Dunlin and Black-tailed Godwit?

This paper by Lilja Jóhannesdóttir, of the University of Iceland, and colleagues there and at the universities of Aveiro (Portugal) and East Anglia (UK), investigates the use of farmland by waders living in a semi-natural landscape.

Paper details: Use of agricultural land by breeding waders in low intensity farming landscapes Lilja Jóhannesdóttir, José A. Alves, Jennifer A. Gill, & Tómas Grétar Gunnarsson Animal Conservation. doi:10.1111/acv.12390

A dynamic landscape

blog snipe postIn Iceland, volcanic activity poses serious short-term threats to agriculture, especially in areas close to the mid-Atlantic ridge, which runs through the island from south-west to north-east. Threats from volcanoes include ash-fall, lava, flooding of glacial rivers and earthquakes but, on the plus side, nutritional inputs from volcanoes have beneficial effects on soil fertility in these central areas. Over time, and with the assistance of wind and water, many of these nutrients collect in the lowlands of the country – the areas that now form the main agricultural areas, especially in the warmer south.

The distribution of breeding waders varies across lowland Iceland. A survey carried out between 2001 and 2003 showed that wader densities were greater in areas of the country that had been subject to higher rates of volcanic ash deposition with, for instance, three times as many waders in the south as in the west. See How volcanic eruptions help waders. As was shown in the paper at the heart of that blog, the nutrient signal associated with ash-fall breaks down in farmland. Here, perhaps as a consequence of the application of natural and artificial fertilisers over decades or even centuries, there is no association between ash-fall and wader density. Across the whole country, irrespective of the proximity of volcanoes, nutrient-rich agricultural land attracts waders – but which wader species and across which farmland habitats?

Waders and agriculture

In a previous paper, Lilja Jóhannesdóttir showed that over 90% of Icelandic farmers think it is important or very important to have rich birdlife on their estates, but that farmers also expect to increase the area of farmed land in the coming years. There’s more about this in the WaderTales blog: Do Iceland’s farmers care about wader conservation? It is important to understand the ways that waders currently use farmland, in the hope that nesting waders can continue to be accommodated within the future farming landscape of Iceland.

blog oyc bare

Perhaps Oystercatchers think that the fields have been ploughed especially for them?

Agriculture in Iceland is still relatively low in intensity and extent, and internationally important populations of several breeding bird species are abundant in farmed regions. Only about 2% of land is cultivated (about 7% of lowland areas), of which about 85% is hayfields (grass fields managed to produce crops of grass for storage as winter feed) and 15% consists of arable fields (mostly barley). This is similar to areas such as Norway, northern Canada and northern and western areas of the British Isles but contrasts sharply with the US and many countries in the EU which, on average, have 20% or more of their land under cultivation.

In these high-latitude landscapes, agricultural land can potentially provide resources that help to support wader species. To address these issues, Lilja conducted surveys of bird abundance on 64 farms in northern, western and southern areas of Iceland that vary in underlying soil productivity, and quantified:

  • Levels of breeding bird use of farmed land managed at three differing intensities, ranging from cultivated fields to semi-natural land
  • Changes in patterns of bird use of farmed land throughout the breeding season.

Farm survey

In Iceland, there are still large patches of natural or semi-natural habitats; they surround the hay-fields and arable fields that are at the heart of many farms. This arrangement creates gradients of agricultural intensity from the farm into the surrounding natural land, tapering from intensive management to moderate and light management.

BLOG gradient

The three intensity levels within Icelandic farmland can be roughly described as follows:

  • Intensive: Hayfields (85%) and arable fields (15%) fields. Most hayfields are mown twice per year and ploughed and reseeded every few years.
  • Moderate: Old hayfields that are rarely or never mown but are used for grazing, or fertilized grasslands used for livestock grazing.
  • Light: Semi-natural or natural areas under low intensity grazing, usually by sheep or horses, or with no agricultural influence, ranging from sparsely vegetated habitats to habitats with abundant vegetation (where grasses and bushes dominate the vegetation) and with a broad wetness gradient.

Fields corresponding to these three categories were surveyed on the 64 farms, firstly during the egg-laying and incubation period and then later, to coincided with chick rearing.

blog 3 habitats

Gradient of management from intensive (left) to wet semi-natural (right)

Where were the waders?

blog RK on postLarge numbers of waders were encountered in all transects in all parts of Iceland, with Black-tailed Godwit and Redshank contributing most records. There were also important numbers of Oystercatcher, Golden Plover, Dunlin, Snipe and Whimbrel. Overall, wader densities on farms did not vary significantly between regions or between early and late visits but there were some subtle differences:

  • Wader density varied significantly along the management gradient, with lower densities tending to occur in more intensively managed areas, particularly in the early (nest-laying and incubation) season.
  • Intensively managed fields in the west (where underlying soil productivity is lower) had higher densities of waders than in the north and south of the country.
  • There were seasonal declines in wader density on all three management types in the south, but seasonal increases on intensive and moderate management in the west and in fields under moderate management in the north.
  • There were some differences between species in these patterns (more details in paper).

blog redshank westOne of the interesting differences in the west was the redistribution of Redshank as the season progressed. There were three times as many pairs of Redshank in cultivated land during the chick-rearing period than during incubation, suggesting that adults may be moving broods into cultivated land. Resources for chicks may well be relatively more abundant or accessible in these areas, given the relatively low levels of nutrients in areas that are a long way from the active volcano belt. There’s also a suggestion that drainage ditches around cultivated fields in the west may provide important resources for Snipe.

What about the future?

blog distributions

Wader densities during the early (red) and later (blue) part of the breeding season (Modified from the paper in Journal of Animal Conservation)

Although the density of birds in Iceland’s agricultural landscapes tends to be higher in lightly managed than intensively managed agricultural land, densities in the areas under the most intense agricultural management are still high, suggesting that agricultural habitats provide important resources within these landscapes (see figure alongside). These density estimates (between 100 and 200 waders/km2) are typically much higher than those recorded in other countries in which these species breed.

Farmers in Iceland expect to expand their cultivated land in the coming years in response to increasing demand for agricultural production (Do Iceland’s farmers care about wader conservation?), and evidence from other countries throughout the world has shown how rapidly biodiversity can be lost in response to agricultural expansion and intensification. Protecting these landscapes from further development is crucial to the species that they support.

The authors suggest ways in which farming practises might change wader distributions in Iceland. Here are a few of the interesting points that they make:

  • When wader-rich semi-natural land is replaced by arable farming and intensively-managed hayfields, this is likely to reduce overall wader densities.
  • Losing wet features, which provide insect food for waders, may well have impacts for chick growth. Here’s a WaderTales blog that discusses the importance of wet features to Lapwings in the UK.
  • In other countries, early grass mowing is a direct threat to nests and chicks. Clutch and brood losses are already being observed in Iceland and, with warmer springs encouraging earlier grass growth, this could become more of a problem.
  • The conversion of less-intensively managed areas into farmland is likely to have most effect on Dunlin, Black-tailed Godwit and Whimbrel, which tend to occur in their highest densities in the least intensively managed lowland areas.

blog walk WhimbrelIt is estimated that between 4 and 5 million waders leave Iceland each autumn, for Europe, Africa and the South Pacific (Red-necked Phalarope). Iceland’s farmland supports many of these birds and this study highlights the need to protect them from the agricultural developments that have led to widespread wader losses throughout most of the world.

You can read the paper here

Use of agricultural land by breeding waders in low-intensity farming landscapes Lilja Jóhannesdóttir, José A. Alves, Jennifer A. Gill, & Tómas Grétar Gunnarsson. Animal Conservation. doi:10.1111/acv.12390

blog oycs & chick

 


 GFA in Iceland

WaderTales blogs are written by Graham Appleton, to celebrate waders and wader research.  Many of the articles are based on previously published papers, with the aim of making wader science available to a broader audience.

@grahamfappleton

 

 

Wetland Bird Survey: working for waders

Red-listed Curlews, Scottish Oystercatchers, a boom in Black-tailed Godwits and the need for safe roost sites. Here’s a selection of WaderTales blogs that may appeal to counters who contribute to the UK Wetland Bird Survey (WeBS) and other birdwatchers who like waders/shorebirds.

Blog RINGOS

It’s over 70 years since UK birdwatchers started to count waders and waterfowl and there are now over 3000 registered Wetland Bird Survey volunteers.

The work that volunteers do to chart the rises and falls of species as diverse as Redshanks and Whooper Swans provides a unique insight into the fortunes of our wintering waterbirds. As a tribute to the people behind the binoculars and telescopes, I highlight seven WaderTales articles that use WeBS data. Click on the links in bold if you want to read a particular story. Link to latest WeBS report.

Curlew counts

curlew

WeBS counts for Curlew in Great Britain between 1974 and 2016

In the blog Is the Curlew really near-threatened? WeBS counts are used to show how numbers have changed over the decades. There might have been a boost in numbers when Curlew came off the hunting quarry list in Great Britain in 1981 but declines in the last 15 years reflect issues birds face in the breeding season in many parts of their European range.

Internationally, Eurasian Curlews are classified as near-threatened and in the UK they are now red listed. WeBS counts in Northern Ireland, alongside I-WeBS counts in the Republic, were successfully used to argue for the cessation of shooting across the island of Ireland in 2012.

Scottish Oystercatchers

L17A9623 (2)

Oystercatchers are unusual, amongst waders, in that they feed their young

Surely the Oystercatcher is one wader species that we don’t need to worry about? Although the blog Oystercatcher: from shingle beach to roof-top leads with nesting behaviour, WeBS counts are used to illustrate regional trends in different parts of the United Kingdom. In Scotland, there is concern about poor breeding success, while in parts of Wales and England, WeBS counts may provide a way of measuring the population-level effects of cockle fishing and diseases affecting shellfish.

oyc webs

Three very different trajectories for national WeBS counts for Oystercatchers since 1974

Mid-winter movements

figureThe annual WeBS report highlights the months in which counts are at their highest in different estuaries. For Knot, for instance, the highest counts on the Wash are in September, in other east-coast estuaries and on the Dee the peak is in December, whilst further north, in Morecambe Bay and the Solway, top numbers occur in January and February.

In Godwits & Godwiteers, which focuses on the superb work of observers who track the movements of colour-ringed Black-tailed Godwits, WeBS counts from east coast estuaries and the Ouse Washes illustrate the move inland that occurs as the winter progresses.

National patterns and local counts

blogGroups of WeBS counters who cover local estuaries will be the first to notice changes in the numbers of the key species that use their own sites. If the number of Dunlin drops, is that a local phenomenon or part of a national picture? Is there always a strong link between national declines (or increases) and site-based counts? Interpreting changing wader counts provides some answers. It emphasises just how reluctant waders are to change wintering sites between years.

High-tide roosts

horse-and-flockEvery WeBS counter will appreciate the value of a safe (undisturbed) roosting site, whether this be used by waders or by ducks and geese. In A place to roost, WeBS counts for Black-tailed Godwits are used to assess the national and international importance of an individual roosting site in northwest England. The main thread, however, is about the energy expenditure associated with sleeping (not very much) and travelling to and from a safe roost site (lots). An interesting add-on is the story of what happened to Cardiff’s Redshanks when the estuary was turned into a lake.

New recruits

If adult birds don’t change their winter homes then increases in local populations may well reflect good breeding years for wader species. 2017 was a good year for several species that breed in Iceland, particularly Black-tailed Godwits. T with BTGA great summer for Iceland’s waders puts the year’s productivity into context and gives an update on wader research that is being undertaken by the South Iceland Research Centre (University of Iceland), the University of East Anglia (UK) and the University of Aveiro (Portugal). If you have ever seen a colour-ringed Black-tailed Godwit, Ringed Plover, Oystercatcher or Whimbrel you may well find this interesting.

On the open shore

NEWS tableThe blog News & Oystercatchers was written to promote the Non-estuarine Waterbird Survey of 2015/16, or NEWS-III. There are a lot of waders on the shorelines that link the estuaries that are covered for WeBS and, every few years, volunteers are asked to count these birds. In NEWS-II (2006/07), it was estimated that 87% of Purple Sandpipers were to be found on the open shore (see table) with high numbers of several other species. There’s an initial assessment of the results for NEWS-III in the 2016-17 WeBS report.

Links to blogs mentioned already

Many more to choose from

There are over 40 WaderTales blogs to choose from in this list. Four of these articles might be of particular interest to WeBS counters:

  • knot

    Knot migration

    Which wader, when and why? gives an overview of the migration of waders into, out of and through Britain & Ireland. The patterns help to explain why the peak numbers for Sanderling occur on the Wash in August, on the Dee in November and on the North Norfolk coast in May, for instance.

  • Bar-tailed Godwits: migration & survival  contrasts the different migration patterns of the two races of Bar-tailed Godwits that use British & Irish estuaries and explains the importance of colour-rings in the calculation of survival rates. On the other side of the world, Wader declines in the shrinking Yellow Sea shows how quickly numbers can change if the annual survival probabilities of adults fall. sum plum
  • The not-so-Grey Plover focuses on the Grey or Black-bellied Plover but the real story is about moult. British and Irish estuaries are important to huge numbers of moulting waders. WeBS counters often don’t have time to look at individual birds but, with the right camera, you can learn a lot about waders by checking out the right feathers.

Thank you

Blog Counter 1I use WeBS data a lot – in my blogs and in articles – and I appreciate the tremendous value of data collected each month by thousands of contributors. They monitor the condition of their local patches and have directly contributed to local, national and international reviews of the conservation status of wintering waterbirds. To every current and past WeBS counter – ‘thank you!’

There’s a (large) selection of papers using WeBS data here, on the BTO website. The Wetland Bird Survey is run by the BTO, in partnership with RSPB and JNCC (which acts on behalf of NE, NRW, SNH & DAERA), and in association with WWT.


 GFA in Iceland

WaderTales blogs are written by Graham Appleton, to celebrate waders and wader research.  Many of the articles are based on previously published papers, with the aim of making wader science available to a broader audience.

@grahamfappleton